Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
mSystems ; 8(6): e0068823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37942948

RESUMO

IMPORTANCE: To our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn's disease disrupts the lives of patients and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms.


Assuntos
Brassica , Doença de Crohn , Enterocolite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Doenças Inflamatórias Intestinais/microbiologia , Doença de Crohn/prevenção & controle , Dieta
2.
Neurogastroenterol Motil ; 35(11): e14673, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831752

RESUMO

BACKGROUND: 5-hydroxytryptamine 4 receptors (5-HT4 Rs) are expressed in the colonic epithelium, and previous studies have demonstrated that luminal administration of agonists enhances motility, suppresses nociception, and is protective in models of inflammation. We investigated whether stimulation with a luminally acting 5-HT4 R agonist is comparable to previously tested absorbable compounds. METHODS: The dextran sodium sulfate (DSS), trinitrobenzene sulfonic acid (TNBS), and interleukin 10 knockout (IL-10KO) models of colitis were used to test the protective effects of the luminally acting 5-HT4 R agonist, 5HT4-LA1, in the absence and presence of a 5-HT4 R antagonist. The compounds were delivered by enema to mice either before (prevention) or after (recovery) the onset of active colitis. Outcome measure included disease activity index (DAI) and histological evaluation of colon tissue, and effects on wound healing and fecal water content were also assessed. KEY RESULTS: Daily enema of 5HT4-LA1 attenuated the development of, and accelerated recovery from, active colitis. Enema administration of 5HT4-LA1 did not attenuate the development of colitis in 5-HT4 R knockout mice. Stimulation of 5-HT4 Rs with 5HT4-LA1 increased Caco-2 cell migration (accelerated wound healing). Daily administration of 5HT4-LA1 did not increase fecal water content in active colitis. CONCLUSIONS AND INFERENCES: Luminally restricted 5-HT4 R agonists are comparable to absorbable compounds in attenuating and accelerating recovery from active colitis. Luminally acting 5-HT4 R agonists may be useful as an adjuvant to current inflammatory bowel disease (IBD) treatments to enhance epithelial healing.


Assuntos
Colite , Serotonina , Humanos , Camundongos , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Camundongos Knockout , Água
3.
mSystems ; 8(5): e0053223, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702510

RESUMO

IMPORTANCE: Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate-induced colitis, that colitis erases biogeographic patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.


Assuntos
Brassica , Colite , Microbioma Gastrointestinal , Camundongos , Animais , Colite/induzido quimicamente , Inflamação
4.
Semin Neurol ; 43(4): 495-505, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37562453

RESUMO

Propulsion of contents in the gastrointestinal tract requires coordinated functions of the extrinsic nerves to the gut from the brain and spinal cord, as well as the neuromuscular apparatus within the gut. The latter includes excitatory and inhibitory neurons, pacemaker cells such as the interstitial cells of Cajal and fibroblast-like cells, and smooth muscle cells. Coordination between these extrinsic and enteric neurons results in propulsive functions which include peristaltic reflexes, migrating motor complexes in the small intestine which serve as the housekeeper propelling to the colon the residual content after digestion, and mass movements in the colon which lead to defecation.


Assuntos
Sistema Nervoso Entérico , Humanos , Sistema Nervoso Entérico/fisiologia , Colo/inervação , Colo/fisiologia , Neurônios
5.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292900

RESUMO

Inflammatory Bowel Diseases (IBD) are devastating conditions of the gastrointestinal tract with limited treatments, and dietary intervention may be effective, and affordable, for managing symptoms. Glucosinolate compounds are highly concentrated in broccoli sprouts, especially glucoraphanin, and can be metabolized by certain mammalian gut bacteria into anti inflammatory isothiocyanates, such as sulforaphane. Gut microbiota exhibit biogeographic patterns, but it is unknown if colitis alters these or whether the location of glucoraphanin metabolizing bacteria affects anti-inflammatory benefits. We fed specific pathogen free C57BL/6 mice either a control diet or a 10% steamed broccoli sprout diet, and gave a three-cycle regimen of 2.5% dextran sodium sulfate (DSS) in drinking water over a 34-day experiment to simulate chronic, relapsing ulcerative colitis. We monitored body weight, fecal characteristics, lipocalin, serum cytokines, and bacterial communities from the luminal and mucosa-associated populations in the jejunum, cecum, and colon. Mice fed the broccoli sprout diet with DSS treatment performed better than mice fed the control diet with DSS, including significantly more weight gain, lower Disease Activity Indexes, lower plasma lipocalin and proinflammatory cytokines, and higher bacterial richness in all gut locations. Bacterial communities were assorted by gut location, but were more homogenous across locations in the control diet + DSS mice. Importantly, our results showed that broccoli sprout feeding abrogated the effects of DSS on gut microbiota, as bacterial richness and biogeography were similar between mice receiving broccoli sprouts with and without DSS. Collectively, these results support the protective effect of steamed broccoli sprouts against dysbiosis and colitis induced by DSS. Importance: Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone, and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate induced colitis, that colitis erases biogeographical patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.

6.
Neurogastroenterol Motil ; 35(10): e14629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37357378

RESUMO

BACKGROUND: An emerging strategy to treat symptoms of gastrointestinal (GI) dysmotility utilizes the administration of isolated bacteria. However, the underlying mechanisms of action of these bacterial agents are not well established. Here, we elucidate a novel approach to promote intestinal motility by exploiting the biochemical capability of specific bacteria to produce the serotonin (5-HT) precursor, tryptophan (Trp). METHODS: Mice were treated daily for 1 week by oral gavage of Bacillus (B.) subtilis (R0179), heat-inactivated R0179, or a tryptophan synthase-null strain of B. subtilis (1A2). Tissue levels of Trp, 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured and changes in motility were evaluated. KEY RESULTS: Mice treated with B. subtilis R0179 exhibited greater colonic tissue levels of Trp and the 5-HT breakdown product, 5-HIAA, compared to vehicle-treated mice. Furthermore, B. subtilis treatment accelerated colonic motility in both healthy mice as well as in a mouse model of constipation. These effects were not observed with heat-inactivated R0179 or the live 1A2 strain that does not express tryptophan synthase. Lastly, we found that the prokinetic effects of B. subtilis R0179 were blocked by coadministration of a 5-HT4 receptor (5-HT4 R) antagonist and were absent in 5-HT4 R knockout mice. CONCLUSIONS AND INFERENCES: Taken together, these data demonstrate that intestinal motility can be augmented by treatment with bacteria that synthesize Trp, possibly through increased 5-HT signaling and/or actions of Trp metabolites, and involvement of the 5-HT4 R. Our findings provide mechanistic insight into a transient and predictable bacterial strategy to promote GI motility.


Assuntos
Triptofano Sintase , Triptofano , Camundongos , Animais , Triptofano/farmacologia , Serotonina/metabolismo , Ácido Hidroxi-Indolacético , Triptofano Sintase/farmacologia , Motilidade Gastrointestinal , Camundongos Knockout , Bactérias
7.
bioRxiv ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747766

RESUMO

Crohn's Disease (CD) is a presentation of Inflammatory Bowel Disease (IBD) that manifests in childhood and adolescence, and involves chronic and severe enterocolitis, immune and gut microbiome dysregulation, and other complications. Diet and gut-microbiota-produced metabolites are sources of anti-inflammatories which could ameliorate symptoms. However, questions remain on how IBD influences biogeographic patterns of microbial location and function in the gut, how early life transitional gut communities are affected by IBD and diet interventions, and how disruption to biogeography alters disease mediation by diet components or microbial metabolites. Many studies on diet and IBD use a chemically induced ulcerative colitis model, despite the availability of an immune-modulated CD model. Interleukin-10-knockout (IL-10-KO) mice on a C57BL/6 background, beginning at age 4 or 7 weeks, were fed a control diet or one containing 10% (w/w) raw broccoli sprouts, which was high in the sprout-sourced anti-inflammatory sulforaphane. Diets began 7 days prior to, and for 2 weeks after inoculation with Helicobacter hepaticus, which triggers Crohn's-like symptoms in these immune-impaired mice. The broccoli sprout diet increased sulforaphane in plasma; decreased weight stagnation, fecal blood, and diarrhea associated; and increased microbiota richness in the gut, especially in younger mice. Sprout diets resulted in some anatomically specific bacteria in younger mice, and reduced the prevalence and abundance of pathobiont bacteria which trigger inflammation in the IL-10-KO mouse, for example; Escherichia coli and Helicobacter. Overall, the IL-10-KO mouse model is responsive to a raw broccoli sprout diet and represents an opportunity for more diet-host-microbiome research.

8.
J Nutr Biochem ; 113: 109238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36442719

RESUMO

Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.


Assuntos
Brassica , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Microbioma Gastrointestinal/fisiologia , Inflamação , Dieta , Brassica/química
9.
Chembiochem ; 24(2): e202200334, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394122

RESUMO

Electrochemical arrays were used to measure the overflow of serotonin (5-HT) and melatonin (MEL) from the entire colon of healthy mice and mice with chemical-induced inflammatory bowel disease (IBD), to understand the interplay between inflammation and colonic function. We show that 5-HT overflow is increased, whilst MEL levels are reduced, in inflamed tissues. The levels of MEL are increased at the interface between healthy and inflamed regions within the colon and may limit the spread of inflammation. Understanding the interplay between inflammation and mucosal epithelial signalling can provide key insight into colonic function and aid the development of effective therapeutic strategies to treat gastrointestinal diseases.


Assuntos
Melatonina , Serotonina , Camundongos , Animais , Mucosa Intestinal , Inflamação , Epitélio
10.
Physiol Rev ; 103(2): 1487-1564, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521049

RESUMO

Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.


Assuntos
Sistema Nervoso Entérico , Humanos , Trato Gastrointestinal , Neurônios/fisiologia , Neuroglia , Transdução de Sinais/fisiologia
11.
Adv Exp Med Biol ; 1383: 329-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587170

RESUMO

Because of their importance in the regulation of gut functions, several therapeutic targets involving serotonin-related proteins have been developed or repurposed to treat motility disorders, including serotonin transporter inhibitors, tryptophan hydroxylase blockers, 5-HT3 antagonists, and 5-HT4 agonists. This chapter focuses on our discovery of 5-HT4 receptors in the epithelial cells of the colon and our efforts to evaluate the effects of stimulating these receptors. 5-HT4 receptors appear to be expressed by all epithelial cells in the mouse colon, based on expression of a reporter gene driven by the 5-HT4 receptor promoter. Application of 5-HT4 agonists to the mucosal surface causes serotonin release from enterochromaffin cells, mucus secretion from goblet cells, and chloride secretion from enterocytes. Luminal administration of 5-HT4 agonists speeds up colonic motility and suppresses distention-induced nociceptive responses. Luminal administration of 5-HT4 agonists also decreases the development of, and improves recovery from, experimental colitis. Recent studies determined that the prokinetic actions of minimally absorbable 5-HT4 agonists are just as effective as absorbable compounds. Collectively, these findings indicate that targeting epithelial receptors with non-absorbable 5-HT4 agonists could offer a safe and effective strategy for treating constipation and colitis.


Assuntos
Colite , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Agonistas do Receptor 5-HT4 de Serotonina/metabolismo , Constipação Intestinal/tratamento farmacológico , Receptores 5-HT4 de Serotonina/metabolismo , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/metabolismo , Motilidade Gastrointestinal/fisiologia
12.
Front Neuroinform ; 16: 819198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090663

RESUMO

The stimulating peripheral activity to relieve conditions (SPARC) program is a US National Institutes of Health-funded effort to improve our understanding of the neural circuitry of the autonomic nervous system (ANS) in support of bioelectronic medicine. As part of this effort, the SPARC project is generating multi-species, multimodal data, models, simulations, and anatomical maps supported by a comprehensive knowledge base of autonomic circuitry. To facilitate the organization of and integration across multi-faceted SPARC data and models, SPARC is implementing the findable, accessible, interoperable, and reusable (FAIR) data principles to ensure that all SPARC products are findable, accessible, interoperable, and reusable. We are therefore annotating and describing all products with a common FAIR vocabulary. The SPARC Vocabulary is built from a set of community ontologies covering major domains relevant to SPARC, including anatomy, physiology, experimental techniques, and molecules. The SPARC Vocabulary is incorporated into tools researchers use to segment and annotate their data, facilitating the application of these ontologies for annotation of research data. However, since investigators perform deep annotations on experimental data, not all terms and relationships are available in community ontologies. We therefore implemented a term management and vocabulary extension pipeline where SPARC researchers may extend the SPARC Vocabulary using InterLex, an online vocabulary management system. To ensure the quality of contributed terms, we have set up a curated term request and review pipeline specifically for anatomical terms involving expert review. Accepted terms are added to the SPARC Vocabulary and, when appropriate, contributed back to community ontologies to enhance ANS coverage. Here, we provide an overview of the SPARC Vocabulary, the infrastructure and process for implementing the term management and review pipeline. In an analysis of >300 anatomical contributed terms, the majority represented composite terms that necessitated combining terms within and across existing ontologies. Although these terms are not good candidates for community ontologies, they can be linked to structures contained within these ontologies. We conclude that the term request pipeline serves as a useful adjunct to community ontologies for annotating experimental data and increases the FAIRness of SPARC data.

14.
Neurogastroenterol Motil ; 34(10): e14346, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35246905

RESUMO

Mounting evidence highlights the pivotal role of enteric microbes as a dynamic interface with the host. Indeed, the gut microbiota, located in the lumen of the gastrointestinal (GI) tract, influence many essential physiological processes that are evident in both healthy and pathological states. A key signaling molecule throughout the body is serotonin (5-hydroxytryptamine; 5-HT), which acts in the GI tract to regulate numerous gut functions including intestinal motility and secretion. The gut microbiota can modulate host 5-HT systems both directly and indirectly. Direct actions of gut microbes, evidenced by studies using germ-free animals or antibiotic administration, alter the expression of key 5-HT-related genes to promote 5-HT biosynthesis. Indirectly, the gut microbiota produce numerous microbial metabolites, whose actions can influence host serotonergic systems in a variety of ways. This review summarizes the current knowledge regarding mechanisms by which gut bacteria act to regulate host 5-HT and 5-HT-mediated gut functions, as well as implications for 5-HT in the microbiota-gut-brain axis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Microbiota/fisiologia , Serotonina/metabolismo
16.
BMC Gastroenterol ; 21(1): 281, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238227

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) is a promising new strategy in the treatment of Inflammatory Bowel Disease, but long-term delivery systems are lacking. This randomized study was designed as a safety and feasibility study of long-term FMT in subjects with mild to moderate UC using frozen, encapsulated oral FMT (cFMT). METHODS: Subjects were randomized 1:1 to receive FMT induction by colonoscopy, followed by 12 weeks of daily oral administration of frozen encapsulated cFMT or sham therpay. Subjects were followed for 36 weeks and longitudenal clinical assessments included multiple subjective and objective markers of disease severity. Ribosomal 16S bacterial sequencing was used to assess donor-induced changes in the gut microbiota. Changes in T regulatory (Treg) and mucosal associated invariant T (MAIT) cell populations were evaluated by flow cytometry as an exploratory endpoint. RESULTS: Twelve subjects with active UC were randomized: 6 subjects completed the full 12-week course of FMT plus cFMT, and 6 subjects received sham treatment by colonic installation and longitudinal oral placebo capules. Chronic administration of cFMT was found to be safe and well-tolerated but home storage concerns exist. Protocol adherence was high, and none of the study subjects experienced FMT-associated treatment emergent adverse events. Two subjects that received cFMT achieved clinical remission versus none in the placebo group (95% CI = 0.38-infinity, p = 0.45). cFMT was associated with sustained donor-induced shifts in fecal microbial composition. Changes in MAIT cell cytokine production were observed in cFMT recipients and correlated with treatment response. CONCLUSION: These pilot data suggest that daily encapsulated cFMT may extend the durability of index FMT-induced changes in gut bacterial community structure and that an association between MAIT cell cytokine production and clinical response to FMT may exist in UC populations. Oral frozen encapsulated cFMT is a promising FMT delivery system and may be preferred for longterm treatment strategies in UC and other chronic diseases but further evaluations will have to address home storage concerns. Larger trials should be done to explore the benefits of cFMT and to determine its long-term impacts on the colonic microbiome. TRIAL REGISTRATION: ClinicalTrials.gov (NCT02390726). Registered 17 March 2015, https://clinicaltrials.gov/ct2/show/NCT02390726?term=NCT02390726&draw=2&rank=1 .


Assuntos
Colite Ulcerativa , Transplante de Microbiota Fecal , Colite Ulcerativa/terapia , Fezes , Humanos , Projetos Piloto , Estudos Prospectivos , Resultado do Tratamento
17.
Neurogastroenterol Motil ; 33(4): e14026, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33185015

RESUMO

BACKGROUND: 5-HT4 receptor (5-HT4 R) agonists exert prokinetic actions in the GI tract, but non-selective actions and potential for stimulation of non-target 5-HT4 Rs have limited their use. Since 5-HT4 Rs are expressed in the colonic epithelium and their stimulation accelerates colonic propulsion in vitro, we tested whether luminally acting 5-HT4 R agonists promote intestinal motility. METHODS: Non-absorbed 5-HT4 R agonists, based on prucalopride and naronapride, were assessed for potency at the 5-HT4 R in vitro, and for tissue and serum distribution in vivo in mice. In vivo assessment of prokinetic potential included whole gut transit, colonic motility, fecal output, and fecal water content. Colonic motility was also studied ex vivo in mice treated in vivo. Immunofluorescence was used to evaluate receptor distribution in human intestinal mucosa. KEY RESULTS: Pharmacological screening demonstrated selectivity and potency of test agonists for 5-HT4 R. Bioavailability studies showed negligible serum detection. Gavage of agonists caused faster whole gut transit and colonic motility, increased fecal output, and elevated fecal water content. Prokinetic actions were blocked by a 5-HT4 R antagonist and were not detected in 5-HT4 R knockout mice. Agonist administration promoted motility in models of constipation. Evaluation of motility patterns ex vivo revealed enhanced contractility in the middle and distal colon. Immunoreactivity for 5-HT4 R is present in the epithelial layer of the human small and large intestines. CONCLUSIONS AND INFERENCES: These findings demonstrated that stimulation of epithelial 5-HT4 Rs can potentiate propulsive motility and support the concept that mucosal 5-HT4 Rs could represent a safe and effective therapeutic target for the treatment of constipation.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal/fisiologia , Mucosa Intestinal/fisiologia , Receptores 5-HT4 de Serotonina/fisiologia , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Animais , Células CHO , Colo/efeitos dos fármacos , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/fisiopatologia , Cricetinae , Cricetulus , Motilidade Gastrointestinal/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico
18.
Genes Immun ; 21(5): 311-325, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32848229

RESUMO

Inflammatory bowel disease (IBD) is a complex disorder that imposes a growing health burden. Multiple genetic associations have been identified in IBD, but the mechanisms underlying many of these associations are poorly understood. Animal models are needed to bridge this gap, but conventional laboratory mouse strains lack the genetic diversity of human populations. To more accurately model human genetic diversity, we utilized a panel of chromosome (Chr) substitution strains, carrying chromosomes from the wild-derived and genetically divergent PWD/PhJ (PWD) strain on the commonly used C57BL/6J (B6) background, as well as their parental B6 and PWD strains. Two models of IBD were used, TNBS- and DSS-induced colitis. Compared with B6 mice, PWD mice were highly susceptible to TNBS-induced colitis, but resistant to DSS-induced colitis. Using consomic mice, we identified several PWD-derived loci that exhibited profound effects on IBD susceptibility. The most pronounced of these were loci on Chr1 and Chr2, which yielded high susceptibility in both IBD models, each acting at distinct phases of the disease. Leveraging transcriptomic data from B6 and PWD immune cells, together with a machine learning approach incorporating human IBD genetic associations, we identified lead candidate genes, including Itga4, Pip4k2a, Lcn10, Lgmn, and Gpr65.


Assuntos
Colite Ulcerativa/genética , Loci Gênicos , Predisposição Genética para Doença , Animais , Colite Ulcerativa/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo Genético , Transcriptoma
19.
Headache ; 60(2): 396-404, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31876298

RESUMO

OBJECTIVE: To determine whether transgenic mouse models of migraine exhibit upper gastrointestinal dysmotility comparable to those observed in migraine patients. BACKGROUND: There is considerable evidence supporting the comorbidity of gastrointestinal dysmotility and migraine. Gastrointestinal motility, however, has never been investigated in transgenic mouse models of migraine. METHODS: Three transgenic mouse strains that express pathogenic gene mutations linked to monogenic migraine-relevant phenotypes were studied: CADASIL (Notch3-Tg88), FASP (CSNK1D-T44A), and FHM1 (CACNA1A-S218L). Upper gastrointestinal motility was quantified by measuring gastric emptying and small intestinal transit in mutant and control animals. Gastrointestinal motility was measured at baseline and after pretreatment with 10 mg/kg nitroglycerin (NTG). RESULTS: No significant differences were observed for gastric emptying or small intestinal transit at baseline for any of the 3 transgenic strains when compared to appropriate controls or after pretreatment with NTG when compared to vehicle. CONCLUSIONS: We detected no evidence of upper gastrointestinal dysmotility in mice that express mutations in genes linked to monogenic migraine-relevant phenotypes. Future studies seeking to understand why humans with migraine experience delayed gastric emptying may benefit from pursuing other modifiers of gastrointestinal motility, such as epigenetic or microbiome-related factors.


Assuntos
Modelos Animais de Doenças , Gastroenteropatias , Motilidade Gastrointestinal , Transtornos de Enxaqueca , Animais , Feminino , Gastroenteropatias/etiologia , Masculino , Camundongos , Camundongos Transgênicos , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/genética
20.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G853-G861, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604034

RESUMO

Intestinal functions, including motility and secretion, are locally controlled by enteric neural networks housed within the wall of the gut. The fidelity of these functions depends on the precision of intercellular signaling among cellular elements, including enteric neurons, epithelial cells, immune cells, and glia, all of which are vulnerable to disruptive influences during inflammatory events. This review article describes current knowledge regarding inflammation-induced neuroplasticity along key elements of enteric neural circuits, what is known about the causes of these changes, and possible therapeutic targets for protecting and/or repairing the integrity of intrinsic enteric neurotransmission. Changes that have been detected in response to inflammation include increased epithelial serotonin availability, hyperexcitability of intrinsic primary afferent neurons, facilitation of synaptic activity among enteric neurons, and attenuated purinergic neuromuscular transmission. Dysfunctional propulsive motility has been detected in models of colitis, where causes include the changes described above, and in models of multiple sclerosis and other autoimmune conditions, where autoantibodies are thought to mediate dysmotility. Other cells implicated in inflammation-induced neuroplasticity include muscularis macrophages and enteric glia. Targeted treatments that are discussed include 5-hydroxytryptamine receptor 4 agonists, cyclooxygenase inhibitors, antioxidants, B cell depletion therapy, and activation of anti-inflammatory pathways.


Assuntos
Comunicação Celular/fisiologia , Sistema Nervoso Entérico , Motilidade Gastrointestinal/imunologia , Inflamação , Plasticidade Neuronal/imunologia , Animais , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/fisiopatologia , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Inflamação/terapia , Doença Autoimune do Sistema Nervoso Experimental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...