Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 247(3): 282-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713732

RESUMO

Acinetobacter baumannii is a Gram-negative bacterium responsible for many hospital-acquired infections including ventilator-associated pneumonia and sepsis. We have previously identified A. baumannii thioredoxin A protein (TrxA) as a virulence factor with a multitude of functions including reduction of protein disulfides. TrxA plays an important role in resistance to oxidative stress facilitating host immune evasion in part by alteration of type IV pili and cell surface hydrophobicity. Other virulence factors such as outer membrane vesicles (OMV) shed by bacteria have been shown to mediate bacterial intercellular communication and modulate host immune response. To investigate whether OMVs can be modulated by TrxA, we isolated OMVs from wild type (WT) and TrxA-deficient (ΔtrxA) A. baumannii clinical isolate Ci79 and carried out a functional and proteomic comparison. Despite attenuation of ΔtrxA in a mouse challenge model, pulmonary inoculation of ΔtrxA OMVs resulted in increased lung permeability compared to WT OMVs. Furthermore, ΔtrxA OMVs induced more J774 macrophage-like cell death than WT OMVs. This ΔtrxA OMV-mediated cell death was abrogated when cells were incubated with protease-K-treated OMVs suggesting OMV proteins were responsible for cytotoxicity. We therefore compared WT and mutant OMV proteins using proteomic analysis. We observed that up-regulated and unique ΔtrxA OMV proteins consisted of many membrane bound proteins involved in small molecule transport as well as proteolytic activity. Bacterial OmpA, metalloprotease, and fimbrial protein have been shown to enhance mammalian cell apoptosis through various mechanisms. Differential packaging of these proteins in ΔtrxA OMVs may contribute to the increased cytotoxicity observed in this study.


Assuntos
Acinetobacter baumannii/patogenicidade , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/patologia , Tiorredoxinas/metabolismo , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/isolamento & purificação , Animais , Membrana Externa Bacteriana/metabolismo , Vesículas Extracelulares/patologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Tiorredoxinas/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Toxicon ; 184: 62-67, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479834

RESUMO

Snake venoms are inherently complex. They are mixtures of multiple enzymes, peptides, lipids, carbohydrates, nucleosides, and metal ions. Metal ions make up a small portion of a snake's venom but play outsized roles in enzyme function and stability. Unlike enzyme primary structure, which is easily predicted from genomic sequences, a venom's metal ion content must be measured directly. We leveraged the high throughput and sensitivity of inductively coupled plasma mass spectrometry to analyze the metal ion content of seven North American snake venoms. All venoms were collected from snakes reared at one location, so we could discount variation from environmental or geographical factors. We profiled 71 metal isotopes. Selenium isotopes were consistently high across all venoms tested. When each venom's toxicity was graphed as a function of each different metal isotope, the only strong relationships between metal content and toxicity were for magnesium isotopes.


Assuntos
Venenos de Serpentes/análise , Animais , Espectrometria de Massas , Peptídeos , Proteômica , Serpentes , Estados Unidos
3.
PLoS One ; 14(7): e0218505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31265467

RESUMO

The Gram-negative pathogen, Acinetobacter baumannii has emerged as a global nosocomial health threat affecting the majority of hospitals in the U.S. and abroad. The redox protein thioredoxin has been shown to play several roles in modulation of cellular functions affecting various virulence factors in Gram-negative pathogens. This study aims to explore the role of thioredoxin-A protein (TrxA) in A. baumannii virulence. We determined that deletion of the TrxA gene did not significantly affect resistance to environmental stressors such as temperature, salt, and pH. However, TrxA was critical for survival in the presence of elevated levels of hydrogen peroxide. Lack of TrxA was associated with decreased expression of type IV pili related genes and an inability to undergo normal twitching motility. Interestingly, the TrxA-null mutant was able to form biofilms better than the wildtype (WT) and was observed to be significantly less virulent than the WT in a pulmonary infection model. These results are supportive of thioredoxin playing a key role in A. baumannii virulence.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Proteínas de Bactérias , Fímbrias Bacterianas , Tiorredoxinas , Fatores de Virulência , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Feminino , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Tiorredoxinas/biossíntese , Tiorredoxinas/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
4.
Front Microbiol ; 10: 2849, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921031

RESUMO

Acinetobacter baumannii, a Gram-negative coccobacillus, has become a prevalent nosocomial health threat affecting the majority of hospitals both in the U.S. and around the globe. Microbial cell surface hydrophobicity (CSH) has previously been correlated with virulence, uptake by immune cells, and attachment to epithelial cells. A mutant strain of A. baumannii (ΔtrxA) lacking the redox protein thioredoxin A was found to be more hydrophobic than its wild type (WT) and complemented counterparts, as measured by both Microbial Adhesion to Hydrocarbon (MATH) and salt aggregation. The hydrophobicity of the mutant could be abrogated through treatment with sodium cyanoborohydride (SCBH). This modulation correlated with reduction of disulfide bonds, as SCBH was able to reduce 5,5'-dithio-bis-[2-nitrobenzoic acid] and treatment with the known disulfide reducer, ß-mercaptoethanol, also decreased ΔtrxA CSH. Additionally, the ΔtrxA mutant was more readily taken up than WT by J774 macrophages and this differential uptake could be abrogated though SCBH treatment. When partitioned into aqueous and hydrophobic phases, ΔtrxA recovered from the hydrophobic partition was phagocytosed more readily than from the aqueous phase further supporting the contribution of CSH to A. baumannii uptake by phagocytes. A second Gram-negative bacterium, Francisella novicida, also showed the association of TrxA deficiency (FnΔtrxA) with increased hydrophobicity and uptake by J774 cells. We previously have demonstrated that modification of the type IV pilus system (T4P) was associated with the A. baumannii ΔtrxA phenotype, and the Francisella FnΔtrxA mutant also was found to have a marked T4P deficiency. Interestingly, a F. novicida mutant lacking pilT also showed increased hydrophobicity over FnWT. Collective evidence presented in this study suggests that Gram-negative bacterial thioredoxin mediates CSH through multiple mechanisms including disulfide-bond reduction and T4P modulation.

5.
mBio ; 9(4)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991584

RESUMO

Multidrug-resistant Acinetobacter baumannii is among the most common causes of infectious complications associated with combat-related trauma in military personnel serving overseas. However, little is currently known about its pathogenesis. While the gastrointestinal (GI) tract has been found to be a major reservoir for A. baumannii, as well as to potentially contribute to development of multidrug resistance, no studies have addressed the mechanisms involved in gut colonization. In this study, we address this critical gap in knowledge by first assessing the interaction between secretory IgA (SIgA), the principal humoral immune defense on mucosal surfaces, and the A. baumannii clinical isolate Ci79. Surprisingly, SIgA appeared to enhance A. baumannii GI tract colonization, in a process mediated by bacterial thioredoxin A (TrxA), as evidenced by reduction of bacterial attachment in the presence of TrxA inhibitors. Additionally, a trxA targeted deletion mutant (ΔtrxA) showed reduced bacterial burdens within the GI tract 24 h after oral challenge by in vivo live imaging, along with loss of thiol-reductase activity. Surprisingly, not only was GI tract colonization greatly reduced but the associated 50% lethal dose (LD50) of the ΔtrxA mutant was increased nearly 100-fold in an intraperitoneal sepsis model. These data suggest that TrxA not only mediates A. baumannii GI tract colonization but also may contribute to pathogenesis in A. baumannii sepsis following escape from the GI tract under conditions when the intestinal barrier is compromised, as occurs with cases of severe shock and trauma.IMPORTANCEAcinetobacter baumannii is an emerging bacterial pathogen recently classified as a serious threat to U.S. and global health by both the Centers for Disease Control and Prevention and the World Health Organization. It also is one of the leading causes of combat-related infections associated with injured military personnel serving overseas. Little is known regarding mechanisms of gastrointestinal tract colonization despite this site being shown to serve as a reservoir for multidrug-resistant (MDR) A. baumannii isolates. Here, we establish that secretory IgA, the major immunoglobulin of mucosal surfaces, promotes A. baumannii GI tract colonization via bacterial thioredoxin A as evidenced through significant reduction in colonization in IgA-deficient animals. Additionally, bacterial colonization and mortality were significantly reduced in animals challenged with a thioredoxin A-deficient A. baumannii mutant. Combined, these data suggest that thioredoxin A is a novel virulence factor, for which antithioredoxin therapies could be developed, for this important multidrug-resistant pathogen.


Assuntos
Acinetobacter baumannii/fisiologia , Aderência Bacteriana , Trato Gastrointestinal/microbiologia , Imunoglobulina A Secretora/metabolismo , Fatores Imunológicos/metabolismo , Tiorredoxinas/metabolismo , Fatores de Virulência/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Animais , Modelos Animais de Doenças , Deleção de Genes , Camundongos Endogâmicos C57BL , Oxirredução , Sepse/microbiologia , Sepse/patologia , Análise de Sobrevida , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/genética , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/genética
6.
Front Microbiol ; 9: 336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556223

RESUMO

As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.

7.
Vaccine ; 35(26): 3387-3394, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28522011

RESUMO

Multi-drug resistant Acinetobacter baumannii (MDR-Ab), an opportunistic pathogen associated with nosocomial and combat related infections, has a high mortality due to its virulence and limited treatment options. Deletion of the thioredoxin gene (TrxA) from a clinical isolate of MDR-Ab resulted in a 100-fold increase in 50% lethal dose (LD50) in a systemic challenge murine model. Thus, we investigated the potential use of this attenuated strain as a live vaccine against MDR-Ab. Mice were vaccinated by subcutaneous (s.c.) injection of 2×105 CFU of the ΔtrxA mutant, boosted 14days later with an equivalent inoculum, and then challenged 30days post-vaccination by i.p. injection with 10 LD50 of the wild type (WT) Ci79 strain. Efficacy of vaccination was evaluated by monitoring MDR-Ab specific antibody titers and cytokine production, observing pathology and organ burdens after WT challenge, and measuring levels of serum pentraxin-3, a molecular correlate of A. baumannii infection severity, before and after challenge. Mice vaccinated with ΔtrxA were fully protected against the lethal challenge of WT. However, minimal immunoglobulin class switching was observed with IgM predominating. Spleens harvested from vaccinated mice exhibited negligible levels of IL-4, IFN-γ and IL-17 production when stimulated with UV-inactivated WT Ci79. Importantly, tissues obtained from vaccinated mice displayed reduced pathology and organ burden compared to challenged non-vaccinated mice. Additionally, serum pentraxin-3 concentrations were not increased 24h after challenge in vaccinated mice, correlating with reduction of WT MDR-Ab infection in ΔtrxA immunized mice. Furthermore, passive immunization with ΔtrxA-immune sera provided protection against lethal systemic Ci79 challenge. Collectively, the defined live attenuated ΔtrxA strain is a vaccine candidate against emerging MDR Acinetobacter infection.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Vacinas Bacterianas/imunologia , Tiorredoxinas/genética , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/genética , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Proteína C-Reativa/análise , Citocinas/imunologia , Deleção de Genes , Imunidade nas Mucosas , Imunização Passiva , Switching de Imunoglobulina , Imunoglobulina M/sangue , Camundongos , Camundongos Endogâmicos C57BL , Sepse/prevenção & controle , Componente Amiloide P Sérico/análise , Baço/imunologia , Vacinas Atenuadas/imunologia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...