Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0303923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193657

RESUMO

The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.IMPORTANCEResistance to current antibiotics is increasingly common. New antibiotics that target essential processes are needed to expand clinical options. For Gram-negative bacteria, their cell surface-the outer membrane (OM)-is an essential organelle and antibiotic barrier that is an attractive target for new antibacterials. Lipoproteins are key to building the OM. The LolCDE transporter is needed to supply the OM with lipoproteins and has been a focus of recent antibiotic discovery. In vitro evidence recently proposed a two-part interaction of LolC with LolA lipoprotein chaperone (which traffics lipoproteins to the OM) via "Hook" and "Pad" regions. We show that this model does not reflect lipoprotein trafficking in vivo. Only the Hook is essential for lipoprotein trafficking and is remarkably robust to mutational changes. The Pad is non-essential for lipoprotein trafficking but plays an ancillary role, contributing to trafficking efficiency. These insights inform ongoing efforts to drug LolCDE.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Bactérias Gram-Negativas/metabolismo , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo
2.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986794

RESUMO

The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.

3.
Mol Microbiol ; 119(5): 586-598, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920223

RESUMO

Bacterial two-component signal transduction systems provide sensory inputs for appropriately adapting gene expression. These systems rely on a histidine kinase that phosphorylates a response regulator which alters gene expression. Several two-component systems include additional sensory components that can activate the histidine kinase. In Escherichia coli, the lipoprotein NlpE was identified as a sensor for the Cpx cell envelope stress response. It has remained unclear how NlpE signals to Cpx in the periplasm. In this study, we used a combination of genetics, biochemistry, and AlphaFold2 complex modeling to uncover the molecular details of how NlpE triggers the Cpx response through an interaction with the CpxA histidine kinase. Remarkably, only a short loop of NlpE is required to activate the Cpx response. A single substitution in this loop inactivates NlpE signaling to Cpx and abolishes an in vivo biochemical NlpE:CpxA interaction. An independent AlphaFold multimer prediction supported a role for the loop and predicted an interaction interface at CpxA. Mutations in this CpxA region specifically blind the histidine kinase to NlpE activation but preserve the ability to respond to other cell envelope stressors. Hence, our work additionally reveals a previously unrecognized complexity in signal integration by the CpxA periplasmic sensor domain.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
4.
Proc Natl Acad Sci U S A ; 120(6): e2218473120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716372

RESUMO

The outer membrane (OM) is the defining feature of gram-negative bacteria and is an essential organelle. Accordingly, OM assembly pathways and their essential protein components are conserved throughout all gram-negative species. Lipoprotein trafficking lies at the heart of OM assembly since it supplies several different biogenesis machines with essential lipoproteins. The Escherichia coli Lol trafficking pathway relies on an inner membrane LolCDE transporter that transfers newly made lipoproteins to the chaperone LolA, which rapidly traffics lipoproteins across the periplasm to LolB for insertion into the OM. Strikingly, many gram-negative species (like Caulobacter vibrioides) do not produce LolB, yet essential lipoproteins are still trafficked to the OM. How the final step of trafficking occurs in these organisms has remained a long-standing mystery. We demonstrate that LolA from C. vibrioides can complement the deletion of both LolA and LolB in E. coli, revealing that this protein possesses both chaperone and insertion activities. Moreover, we define the region of C. vibrioides LolA that is responsible for its bifunctionality. This knowledge enabled us to convert E. coli LolA into a similarly bifunctional protein, capable of chaperone and insertion activities. We propose that a bifunctional LolA eliminates the need for LolB. Our findings provide an explanation for why some gram-negative species have retained an essential LolA yet completely lack a dedicated LolB protein.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
5.
J Bacteriol ; 204(2): e0057421, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843378

RESUMO

Purcell and colleagues offer new insights into a major mechanism of polymyxin resistance in Gram-negative bacteria (A. B. Purcell, B. J. Voss, and M. S. Trent, J Bacteriol 204:e00498-21, 2022, https://doi.org/10.1128/JB.00498-21). Inactivating a single lipid recycling enzyme causes accumulation of waste lipid by-products that inhibit a key factor responsible for polymyxin resistance.


Assuntos
Colistina , Polimixinas , Antibacterianos/farmacologia , Colistina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Polimixinas/farmacologia
6.
mBio ; 10(3)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138744

RESUMO

Gram-negative bacteria produce lipid-anchored lipoproteins that are trafficked to their outer membrane (OM). These lipoproteins are essential components in each of the molecular machines that build the OM, including the Bam machine that assembles ß-barrel proteins and the Lpt pathway that transports lipopolysaccharide. Stress responses are known to monitor Bam and Lpt function, yet no stress system has been found that oversees the fundamental process of lipoprotein trafficking. We used genetic and chemical biology approaches to induce several different lipoprotein trafficking stresses in Escherichia coli Our results identified the Cpx two-component system as a stress response for monitoring trafficking. Cpx is activated by trafficking defects and is required to protect the cell against the consequence of the resulting stress. The OM-targeted lipoprotein NlpE acts as a sensor that allows Cpx to gauge trafficking efficiency. We reveal that NlpE signals to Cpx while it is transiting the inner membrane (IM) en route to the OM and that only a small highly conserved N-terminal domain is required for signaling. We propose that defective trafficking causes NlpE to accumulate in the IM, activating Cpx to mount a transcriptional response that protects cells. Furthermore, we reconcile this new role of NlpE in signaling trafficking defects with its previously proposed role in sensing copper (Cu) stress by demonstrating that Cu impairs acylation of lipoproteins and, consequently, their trafficking to the OM.IMPORTANCE The outer membrane built by Gram-negative bacteria such as Escherichia coli forms a barrier that prevents antibiotics from entering the cell, limiting clinical options at a time of prevalent antibiotic resistance. Stress responses ensure that barrier integrity is continuously maintained. We have identified the Cpx signal transduction system as a stress response that monitors the trafficking of lipid-anchored lipoproteins to the outer membrane. These lipoproteins are needed by every machine that builds the outer membrane. Cpx monitors just one lipoprotein, NlpE, to detect the efficiency of lipoprotein trafficking in the cell. NlpE and Cpx were previously shown to play a role in resistance to copper. We show that copper blocks lipoprotein trafficking, reconciling old and new observations. Copper is an important element in innate immunity against pathogens, and our findings suggest that NlpE and Cpx help E. coli survive the assault of copper on a key outer membrane assembly pathway.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Proteínas da Membrana Bacteriana Externa/genética , Cobre/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Transporte Proteico
9.
mBio ; 9(2)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559571

RESUMO

The outer membrane (OM) bilayer of Gram-negative bacteria is biologically unique in its asymmetrical organization of lipids, with an inner leaflet composed of glycerophospholipids (PLs) and a surface-exposed outer leaflet composed of lipopolysaccharide (LPS). This lipid organization is integral to the OM's barrier properties. Perturbations of the outer leaflet by antimicrobial peptides or defects in LPS biosynthesis or transport to the OM cause a compensatory flipping of PLs to the outer leaflet. As a result, lipid asymmetry is disrupted and OM integrity is compromised. Recently, we identified an Escherichia coli mutant that exhibits aberrant accumulation of surface PLs accompanied by a cellular increase in LPS production. Remarkably, the observed hyperproduction of LPS is PldA dependent. Here we provide evidence that the fatty acids generated by PldA at the OM are transported into the cytoplasm and simultaneously activated by thioesterification to coenzyme A (CoA) by FadD. The acyl-CoAs produced ultimately inhibit LpxC degradation by FtsH. The increased levels of LpxC, the enzyme that catalyzes the first committed step in LPS biosynthesis, increases the amount of LPS produced. Our data suggest that PldA acts as a sensor for lipid asymmetry in the OM. PldA protects the OM barrier by both degrading mislocalized PLs and generating lipid second messengers that enable long-distance signaling that prompts the cell to restore homeostasis at a distant organelle.IMPORTANCE The outer membrane of Gram-negative bacteria is an effective permeability barrier that protects the cell from toxic agents, including antibiotics. Barrier defects are often manifested by phospholipids present in the outer leaflet of this membrane that take up space normally occupied by lipopolysaccharide. We have discovered a signaling mechanism that operates across the entire cell envelope used by the cell to detect these outer membrane defects. A phospholipase, PldA, that functions to degrade these mislocalized phospholipids has a second, equally important function as a sensor. The fatty acids produced by hydrolysis of the phospholipids act as second messengers to signal the cell that more lipopolysaccharide is needed. These fatty acids diffuse across the periplasm and are transported into the cytoplasm by a process that attaches coenzyme A. The acyl-CoA molecule produces signals to inhibit the degradation of the critical enzyme LpxC by the ATP-dependent protease FtsH, increasing lipopolysaccharide production.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfolipases/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/metabolismo , Modelos Biológicos , Fosfolipases/genética
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1386-1393, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27742351

RESUMO

The outer membrane (OM) of Gram-negative bacteria is positioned at the frontline of the cell's interaction with its environment and provides a barrier against influx of external toxins while still allowing import of nutrients and excretion of wastes. It is a remarkable asymmetric bilayer with a glycolipid surface-exposed leaflet and a glycerophospholipid inner leaflet. Lipid asymmetry is key to OM barrier function and several different systems actively maintain this lipid asymmetry. All OM components are synthesized in the cytosol before being secreted and assembled into a contiguous membrane on the other side of the cell wall. Work in recent years has uncovered the pathways that transport and assemble most of the OM components. However, our understanding of how phospholipids are delivered to the OM remains notably limited. Here we will review seminal works in phospholipid transfer performed some 40years ago and place more recent insights in their context. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipogênese , Fosfolipídeos/biossíntese , Transporte Biológico , Citosol/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/química
11.
Mol Microbiol ; 102(6): 1099-1119, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671355

RESUMO

Staphylococcus aureus SufT is composed solely of the domain of unknown function 59 (DUF59) and has a role in the maturation of iron-sulphur (Fe-S) proteins. We report that SufT is essential for S. aureus when growth is heavily reliant upon lipoamide-utilizing enzymes, but dispensable when this reliance is decreased. LipA requires Fe-S clusters for lipoic acid (LA) synthesis and a ΔsufT strain had phenotypes suggestive of decreased LA production and decreased activities of lipoamide-requiring enzymes. Fermentative growth, a null clpC allele, or decreased flux through the TCA cycle diminished the demand for LA and rendered SufT non-essential. Abundance of the Fe-S cluster carrier Nfu was increased in a ΔclpC strain and a null clpC allele was unable to suppress the LA requirement of a ΔsufT Δnfu strain. Over-expression of nfu suppressed the LA requirement of the ΔsufT strain. We propose a model wherein SufT, and by extension the DUF59, is essential for the maturation of holo-LipA in S. aureus cells experiencing a high demand for lipoamide-dependent enzymes. The findings presented suggest that the demand for products of Fe-S enzymes is a factor governing the usage of one Fe-S cluster assembly factor over another in the maturation of apo-proteins.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Staphylococcus aureus/metabolismo , Aconitato Hidratase/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico , Proteínas de Escherichia coli , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Infecções Estafilocócicas , Staphylococcus aureus/genética , Enxofre/metabolismo , Ácido Tióctico/análogos & derivados , Ácido Tióctico/genética , Ácido Tióctico/metabolismo , Fatores de Transcrição
12.
Proc Natl Acad Sci U S A ; 113(11): E1565-74, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929379

RESUMO

Gram-negative bacteria balance synthesis of the outer membrane (OM), cell wall, and cytoplasmic contents during growth via unknown mechanisms. Here, we show that a dominant mutation (designated mlaA*, maintenance of lipid asymmetry) that alters MlaA, a lipoprotein that removes phospholipids from the outer leaflet of the OM of Escherichia coli, increases OM permeability, lipopolysaccharide levels, drug sensitivity, and cell death in stationary phase. Surprisingly, single-cell imaging revealed that death occurs after protracted loss of OM material through vesiculation and blebbing at cell-division sites and compensatory shrinkage of the inner membrane, eventually resulting in rupture and slow leakage of cytoplasmic contents. The death of mlaA* cells was linked to fatty acid depletion and was not affected by membrane depolarization, suggesting that lipids flow from the inner membrane to the OM in an energy-independent manner. Suppressor analysis suggested that the dominant mlaA* mutation activates phospholipase A, resulting in increased levels of lipopolysaccharide and OM vesiculation that ultimately undermine the integrity of the cell envelope by depleting the inner membrane of phospholipids. This novel cell-death pathway suggests that balanced synthesis across both membranes is key to the mechanical integrity of the Gram-negative cell envelope.


Assuntos
Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Metabolismo dos Lipídeos/genética , Fosfolipídeos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ácidos Graxos/metabolismo , Lipopolissacarídeos/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Mutação , Permeabilidade , Fosfolipases A1/metabolismo
13.
Infect Immun ; 84(1): 149-61, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483409

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections can lead to life-threatening complications, including hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS), which is the most common cause of acute renal failure in children in the United States. Stx1 and Stx2 are AB5 toxins consisting of an enzymatically active A subunit associated with a pentamer of receptor binding B subunits. Epidemiological evidence suggests that Stx2-producing E. coli strains are more frequently associated with HUS than Stx1-producing strains. Several studies suggest that the B subunit plays a role in mediating toxicity. However, the role of the A subunits in the increased potency of Stx2 has not been fully investigated. Here, using purified A1 subunits, we show that Stx2A1 has a higher affinity for yeast and mammalian ribosomes than Stx1A1. Biacore analysis indicated that Stx2A1 has faster association and dissociation with ribosomes than Stx1A1. Analysis of ribosome depurination kinetics demonstrated that Stx2A1 depurinates yeast and mammalian ribosomes and an RNA stem-loop mimic of the sarcin/ricin loop (SRL) at a higher catalytic rate and is a more efficient enzyme than Stx1A1. Stx2A1 depurinated ribosomes at a higher level in vivo and was more cytotoxic than Stx1A1 in Saccharomyces cerevisiae. Stx2A1 depurinated ribosomes and inhibited translation at a significantly higher level than Stx1A1 in human cells. These results provide the first direct evidence that the higher affinity for ribosomes in combination with higher catalytic activity toward the SRL allows Stx2A1 to depurinate ribosomes, inhibit translation, and exhibit cytotoxicity at a significantly higher level than Stx1A1.


Assuntos
Ribossomos/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Animais , Linhagem Celular , Infecções por Escherichia coli/microbiologia , Células HEK293 , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Ligação Proteica , Biossíntese de Proteínas/genética , Ratos , Saccharomyces cerevisiae/genética
14.
Toxicon ; 69: 143-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23454625

RESUMO

The plant toxin ricin is highly toxic for mammalian cells and is of concern for bioterrorism. Ricin belongs to a family of functionally related toxins, collectively referred to as ribosome inactivating proteins (RIPs), which disable ribosomes and halt protein synthesis. Currently there are no specific antidotes against ricin or related RIPs. The catalytic subunit of ricin is an N-glycosidase that depurinates a universally conserved adenine residue within the sarcin/ricin loop (SRL) of the 28S rRNA. This depurination activity inhibits translation and its biochemistry has been intensively studied. Yet, recent developments paint a more complex picture of toxicity, with ribosomal proteins and cellular signaling pathways contributing to the potency of ricin. In particular, several studies have now established the importance of the ribosomal stalk structure in facilitating the depurination activity and ribosome specificity of ricin and other RIPs. This review highlights recent developments defining toxin-ribosome interactions and examines the significance of these interactions for toxicity and therapeutic intervention.


Assuntos
Bioterrorismo/prevenção & controle , Ribossomos/efeitos dos fármacos , Ricina/toxicidade , Animais , Apoptose , Humanos , RNA Ribossômico 28S/química , Proteínas Inativadoras de Ribossomos/metabolismo , Transdução de Sinais
15.
FEBS J ; 279(20): 3925-36, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22909382

RESUMO

Ricin A-chain (RTA) depurinates the sarcin-ricin loop of 28S ribosomal RNA and inhibits protein synthesis in mammalian cells. In yeast, the ribosomal stalk facilitates the interaction of RTA with the ribosome and subsequent depurination. Despite homology between the stalk structures from yeast and humans, there are notable differences. The human ribosomal stalk contains two identical heterodimers of P1 and P2 bound to P0, whereas the yeast stalk consists of two different heterodimers, P1α-P2ß and P2α-P1ß, bound to P0. RTA exhibits higher activity towards mammalian ribosomes than towards ribosomes from other organisms, suggesting that the mode of interaction with ribosomes may vary. Here, we examined whether the human ribosomal stalk proteins facilitate the interaction of RTA with human ribosomes and subsequent depurination of the sarcin-ricin loop. Using small interfering RNA-mediated knockdown of P1/P2 expression in human cells, we demonstrated that the depurination activity of RTA is lower when P1 and P2 levels are reduced. Biacore analysis showed that ribosomes from P1/P2-depleted cells have a reduced ability to bind RTA, which correlates with reduced depurination activity both in vitro and inside cells. RTA interacts directly with recombinant human P1-P2 dimer, further demonstrating the importance of human P1 and P2 in enabling RTA to bind and depurinate human ribosomes.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ricina/metabolismo , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Multimerização Proteica , Purinas/metabolismo , Interferência de RNA , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Ricina/farmacologia
16.
Microbiology (Reading) ; 158(Pt 7): 1874-1883, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22516224

RESUMO

The IcsA autotransporter protein is a major virulence factor of the human intracellular pathogen Shigella flexneri. IcsA is distributed at the poles in the outer membrane (OM) of S. flexneri and interacts with components of the host actin-polymerization machinery to facilitate intracellular actin-based motility and subsequent cell-to-cell spreading of the bacterium. We sought to characterize the biochemical properties of IcsA in the bacterial OM. Chemical cross-linking data suggested that IcsA exists in a complex in the OM. Furthermore, reciprocal co-immunoprecipitation of differentially epitope-tagged IcsA proteins indicated that IcsA is able to self-associate. The identification of IcsA linker-insertion mutants that were negatively dominant provided genetic evidence of IcsA-IcsA interactions. From these results, we propose a model whereby IcsA self-association facilitates efficient actin-based motility.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Multimerização Proteica , Fatores de Transcrição/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Imunoprecipitação , Ligação Proteica , Shigella flexneri/fisiologia , Fatores de Virulência/metabolismo
17.
Infect Immun ; 78(11): 4691-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20713620

RESUMO

Subtilase cytotoxin (SubAB) was first isolated from a Shiga toxigenic Escherichia coli (STEC) strain that was responsible for an outbreak of hemolytic-uremic syndrome and is the prototype of a new family of AB(5) cytotoxins. SubAB is a subtilase-like serine protease, and upon uptake by host cells, it is trafficked to the endoplasmic reticulum (ER), where it cleaves the essential ER chaperone BiP (GRP78) with high specificity. Previous work has shown that BiP cleavage by SubAB initiates ER stress-signaling pathways in host cells that eventuate in cell death associated with DNA fragmentation, a hallmark of apoptosis. The present study has investigated the role of the Bcl-2 protein family, which has been shown to regulate ER stress-induced apoptosis in other model systems. Examination of the cytotoxicity of SubAB for wild-type and bax(-/-)/bak(-/-) mouse embryonic fibroblasts and comparison of apoptotic markers in these cells revealed that SubAB cytotoxicity can be predominantly attributed to the activation of apoptotic pathways activated by Bax/Bak. The results of the present study further our understanding of the molecular mechanism whereby SubAB kills eukaryotic cells and contributes to STEC pathogenesis, in addition to consolidating the roles of Bcl-2 family members in the regulation of ER stress-induced apoptosis.


Assuntos
Apoptose , Proteínas de Escherichia coli/toxicidade , Regulação da Expressão Gênica , Escherichia coli Shiga Toxigênica/patogenicidade , Subtilisinas/toxicidade , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Chlorocebus aethiops , Fragmentação do DNA , Retículo Endoplasmático/fisiologia , Chaperona BiP do Retículo Endoplasmático , Fibroblastos , Camundongos , Células Vero
18.
J Bacteriol ; 190(13): 4666-76, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18456802

RESUMO

The IcsA (VirG) protein of Shigella flexneri is a polarly localized, outer membrane protein that is essential for virulence. Within host cells, IcsA activates the host actin regulatory protein, neural Wiskott-Aldrich syndrome protein (N-WASP), which in turn recruits the Arp2/3 complex, which nucleates host actin to form F-actin comet tails and initiate bacterial motility. Linker insertion mutagenesis was undertaken to randomly introduce 5-amino-acid in-frame insertions within IcsA. Forty-seven linker insertion mutants were isolated and expressed in S. flexneri Delta icsA strains. Mutants were characterized for IcsA protein production, cell surface expression and localization, intercellular spreading, F-actin comet tail formation, and N-WASP recruitment. Using this approach, we have identified a putative autochaperone region required for IcsA biogenesis, and our data suggest an additional region, not previously identified, is required for N-WASP recruitment.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Shigella flexneri/metabolismo , Fatores de Transcrição/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Western Blotting , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Células HeLa , Humanos , Mutagênese Insercional , Shigella flexneri/genética , Shigella flexneri/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Tripsina/metabolismo
19.
Cell Microbiol ; 10(9): 1775-86, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18433465

RESUMO

Subtilase cytotoxin (SubAB) is the prototype of a new family of AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. Its cytotoxic activity is due to its capacity to enter cells and specifically cleave the essential endoplasmic reticulum (ER) chaperone BiP (GRP78). In the present study, we have examined its capacity to trigger the three ER stress-signalling pathways in Vero cells. Activation of PKR-like ER kinase was demonstrated by phosphorylation of eIF2alpha, which occurred within 30 min of toxin treatment, and correlated with inhibition of global protein synthesis. Activation of inositol-requiring enzyme 1 was demonstrated by splicing of X-box-binding protein 1 mRNA, while activating transcription factor 6 activation was demonstrated by depletion of the 90 kDa uncleaved form, and appearance of the 50 kDa cleaved form. The rapidity with which ER stress-signalling responses are triggered by exposure of cells to SubAB is consistent with the hypothesis that cleavage by the toxin causes BiP to dissociate from the signalling molecules.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Subtilisinas/metabolismo , eIF-2 Quinase/metabolismo , Animais , Chlorocebus aethiops , Transdução de Sinais , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...