Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 7(7): e1002133, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750681

RESUMO

The Fell and Dales are rare native UK pony breeds at risk due to falling numbers, in-breeding, and inherited disease. Specifically, the lethal Mendelian recessive disease Foal Immunodeficiency Syndrome (FIS), which manifests as B-lymphocyte immunodeficiency and progressive anemia, is a substantial threat. A significant percentage (∼10%) of the Fell ponies born each year dies from FIS, compromising the long-term survival of this breed. Moreover, the likely spread of FIS into other breeds is of major concern. Indeed, FIS was identified in the Dales pony, a related breed, during the course of this work. Using a stepwise approach comprising linkage and homozygosity mapping followed by haplotype analysis, we mapped the mutation using 14 FIS-affected, 17 obligate carriers, and 10 adults of unknown carrier status to a ∼1 Mb region (29.8 - 30.8 Mb) on chromosome (ECA) 26. A subsequent genome-wide association study identified two SNPs on ECA26 that showed genome-wide significance after Bonferroni correction for multiple testing: BIEC2-692674 at 29.804 Mb and BIEC2-693138 at 32.19 Mb. The associated region spanned 2.6 Mb from ∼29.6 Mb to 32.2 Mb on ECA26. Re-sequencing of this region identified a mutation in the sodium/myo-inositol cotransporter gene (SLC5A3); this causes a P446L substitution in the protein. This gene plays a crucial role in the regulatory response to osmotic stress that is essential in many tissues including lymphoid tissues and during early embryonic development. We propose that the amino acid substitution we identify here alters the function of SLC5A3, leading to erythropoiesis failure and compromise of the immune system. FIS is of significant biological interest as it is unique and is caused by a gene not previously associated with a mammalian disease. Having identified the associated gene, we are now able to eradicate FIS from equine populations by informed selective breeding.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Cavalos/genética , Síndromes de Imunodeficiência/genética , Mutação/genética , Simportadores/genética , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Mapeamento Cromossômico , Cromossomos/imunologia , Predisposição Genética para Doença , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , Homologia de Sequência de Aminoácidos , Simportadores/imunologia
2.
J Med Chem ; 45(3): 598-622, 2002 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11806712

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling in part by dephosphorylating key tyrosine residues within the regulatory domain of the beta-subunit of the insulin receptor (IR), thereby attenuating receptor tyrosine kinase activity. Inhibition of PTP1B is therefore anticipated to improve insulin resistance and has recently become the focus of discovery efforts aimed at identifying new drugs to treat type II diabetes. We previously reported that the tripeptide Ac-Asp-Tyr(SO(3)H)-Nle-NH(2) is a surprisingly effective inhibitor of PTP1B (K(i) = 5 microM). With the goal of improving the stability and potency of this lead, as well as attenuating its peptidic character, an analogue program was undertaken. Specific elements of the initial phase of this program included replacement of the N- and C-termini with non-amino acid components, modification of the tyrosine subunit, and replacement of the tyrosine sulfate with other potential phosphate mimics. The most potent analogue arising from this effort was triacid 71, which inhibits PTP1B competitively with a K(i) = 0.22 microM without inhibiting SHP-2 or LAR at concentrations up to 100 microM. Overall, the inhibitors generated in this work showed little or no enhancement of insulin signaling in cellular assays. However, potential prodrug triester 70 did induce enhancements in 2-deoxyglucose uptake into two different cell lines with concomitant augmentation of the tyrosine phosphorylation levels of insulin-signaling molecules. Key elements of the overall SAR reported herein include confirmation of the effectiveness and remarkable PTP1B-specificity of the novel tyrosine phosphate bioisostere, O-carboxymethyl salicylic acid; demonstration that the tyrosine skeleton is optimal relative to closely related structures; replacement of the p-1 aspartic acid with phenylalanine with little effect on activity; and demonstration that inhibitory activity can be maintained in the absence of an N-terminal carboxylic acid. An X-ray cocrystal structure of an analogue bearing a neutral N-terminus (69) bound to PTP1B is reported that confirms a mode of binding similar to that of peptidic substrates.


Assuntos
Dipeptídeos/síntese química , Inibidores Enzimáticos/síntese química , Peptídeos/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Linhagem Celular , Cristalografia por Raios X , Desoxiglucose/metabolismo , Dipeptídeos/química , Dipeptídeos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ligação de Hidrogênio , Insulina/farmacologia , Modelos Moleculares , Mimetismo Molecular , Peso Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Relação Estrutura-Atividade , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...