Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 7(3): 946-951, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35310458

RESUMO

The optoelectronic properties of halide perovskite materials have fostered their utilization in many applications. Unravelling their working mechanisms remains challenging because of their mixed ionic-electronic conductive nature. By registering, with high reproducibility, the long-time current transients of a set of single-crystal methylammonium lead tribromide samples, the ion migration process was proved. Sample biasing experiments (ionic drift), with characteristic times exhibiting voltage dependence as ∝ V -3/2, is interpreted with an ionic migration model obeying a ballistic-like voltage-dependent mobility (BVM) regime of space-charge-limited current. Ionic kinetics effectively modify the long-time electronic current, while the steady-state electronic currents' behavior is nearly ohmic. Using the ionic dynamic doping model (IDD) for the recovering current at zero bias (ion diffusion), the ionic mobility is estimated to be ∼10-6 cm2 V-1 s-1. Our findings suggest that ionic currents are negligible in comparison to the electronic currents; however, they influence them via changes in the charge density profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA