Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4321, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773076

RESUMO

The flat bands in magic-angle twisted bilayer graphene (MATBG) provide an especially rich arena to investigate interaction-driven ground states. While progress has been made in identifying the correlated insulators and their excitations at commensurate moiré filling factors, the spin-valley polarizations of the topological states that emerge at high magnetic field remain unknown. Here we introduce a technique based on twist-decoupled van der Waals layers that enables measurement of their electronic band structure and-by studying the backscattering between counter-propagating edge states-the determination of the relative spin polarization of their edge modes. We find that the symmetry-broken quantum Hall states that extend from the charge neutrality point in MATBG are spin unpolarized at even integer filling factors. The measurements also indicate that the correlated Chern insulator emerging from half filling of the flat valence band is spin unpolarized and suggest that its conduction band counterpart may be spin polarized.

2.
Nature ; 618(7967): 928-933, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37380690

RESUMO

The intense interest in triplet superconductivity partly stems from theoretical predictions of exotic excitations such as non-Abelian Majorana modes, chiral supercurrents and half-quantum vortices1-4. However, fundamentally new and unexpected states may emerge when triplet superconductivity appears in a strongly correlated system. Here we use scanning tunnelling microscopy to reveal an unusual charge-density-wave (CDW) order in the heavy-fermion triplet superconductor UTe2 (refs. 5-8). Our high-resolution maps reveal a multi-component incommensurate CDW whose intensity gets weaker with increasing field, with the CDW eventually disappearing at the superconducting critical field Hc2. To understand the phenomenology of this unusual CDW, we construct a Ginzburg-Landau theory for a uniform triplet superconductor coexisting with three triplet pair-density-wave states. This theory gives rise to daughter CDWs that would be sensitive to magnetic field owing to their origin in a pair-density-wave state and provides a possible explanation for our data. Our discovery of a CDW state that is sensitive to magnetic fields and strongly intertwined with superconductivity provides important information for understanding the order parameters of UTe2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...