Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38257922

RESUMO

A comprehensive entomological survey was undertaken in Alipurduar District, West Bengal, from 2018 to 2020 and in 2022. This study was prompted by reported malaria cases and conducted across nine villages, seven Sub-Centres, and three Primary Health Centres (PHCs). Mosquitoes were hand-collected with aspirators and flashlights from human dwellings and cattle sheds during the daytime. Both morphological and molecular techniques were used for species identification. Additionally, mosquitoes were tested for Plasmodium parasites and human blood presence. Mosquito species such as An. barbirostris s.l., An. hyrcanus s.l., An. splendidus, and An. vagus were morphologically identified. For species like An. annularis s.l., An. minimus s.s., An. culicifacies s.l., and An. maculatus s.s., a combination of morphological and molecular techniques was essential. The mitochondrial cytochrome c oxidase gene subunit 1 (CO1) was sequenced for An. annularis s.l., An. maculatus s.s., An. culicifacies s.l., An. vagus, and some damaged samples, revealing the presence of An. pseudowillmori and An. fluviatilis. The major Anopheles species were An. annularis s.l., An. culicifacies s.l., and An. maculatus s.s., especially in Kumargram and Turturi PHCs. Plasmodium positivity was notably high in An. annularis s.l. and An. maculatus s.s. with significant human blood meal positivity across most species. Morphological, molecular, and phylogenetic analyses are crucial, especially for archived samples, to accurately identify the mosquito fauna of a region. Notably, this study confirms the first occurrence of An. pseudowillmori and An. sawadwongporni in West Bengal and implicates An. maculatus s.s., An. culicifacies s.l., and An. annularis s.l. as significant vectors in the Alipurduar region.

2.
Curr Pharm Biotechnol ; 23(11): 1367-1376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34911410

RESUMO

OBJECTIVES: The Plasmodium parasite is transmitted directly to humans through the Anopheles mosquito bite and causes vector-borne malaria, leading to the transmission of the disease in Southeast Asia, including India. The problem of persistent toxicity, along with the growing incidence of insect resistance, has led to the use of green pesticides to control the spread of the disease in a cost-effective and environment-friendly manner. Based on this objective, this work investigated the larvicidal, pupicidal, and ovicidal activity of Mentha pipertia using a natural nanoemulsion technique. METHODS: GC-MS characterized essential oils of Mentha pipertia leaves were formulated as a nanoemulsion for herbal larvicidal, pupicidal, and ovicidal activities. Size of the nanoemulsion was analyzed by photon correlation spectroscopy. The herbal activities against Anopheles Stephensi of nanoemulsion were evaluated in terms of the lethal concentration for 50% (LC50) and 90% (LC90) to prove low cost, pollution free active effective formulation. RESULTS: Chiral, keto, and alcohol groups are obtained from Mentha pipertia leaves' essential oil, and the nanoemulsions have demonstrated good results in the larvicidal probit analysis, with values of LC50=09.67 ppm and LC90=20.60 ppm. Activity results of the most stable nano formulation with 9.89 nm size showed a significant increase when compared to the bulk. CONCLUSION: The nanoemulsion of Mentha pipertia leaves can be a promising eco-friendly widely available, low-cost herbicide against the Anopheles mosquito.


Assuntos
Anopheles , Inseticidas , Mentha piperita , Óleos Voláteis , Aedes , Animais , Humanos , Inseticidas/farmacologia , Larva , Mentha , Mentha piperita/química , Mosquitos Vetores , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...