Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(2): e56763, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437231

RESUMO

AIMS: Type 1 diabetes (T1D) is characterized by autoimmune depletion of insulin-producing pancreatic beta cells. We showed previously that deletion of the 12/15-lipoxygenase enzyme (12/15-LO, Alox15 gene) in NOD mice leads to nearly 100 percent protection from T1D. In this study, we test the hypothesis that cytokines involved in the IL-12/12/15-LO axis affect both macrophage and islet function, which contributes to the development of T1D. METHODS: 12/15-LO expression was clarified in immune cells by qRT-PCR, and timing of expression was tested in islets using qRT-PCR and Western blotting. Expression of key proinflammatory cytokines and pancreatic transcription factors was studied in NOD and NOD-Alox15(null) macrophages and islets using qRT-PCR. The two mouse strains were also assessed for the ability of splenocytes to transfer diabetes in an adoptive transfer model, and beta cell mass. RESULTS: 12/15-LO is expressed in macrophages, but not B and T cells of NOD mice. In macrophages, 12/15-LO deletion leads to decreased proinflammatory cytokine mRNA and protein levels. Furthermore, splenocytes from NOD-Alox15(null) mice are unable to transfer diabetes in an adoptive transfer model. In islets, expression of 12/15-LO in NOD mice peaks at a crucial time during insulitis development. The absence of 12/15-LO results in maintenance of islet health with respect to measurements of islet-specific transcription factors, markers of islet health, proinflammatory cytokines, and beta cell mass. CONCLUSIONS: These results suggest that 12/15-LO affects islet and macrophage function, causing inflammation, and leading to autoimmunity and reduced beta cell mass.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Diabetes Mellitus Tipo 1/genética , Macrófagos/enzimologia , Oxigenases/genética , Animais , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Interleucina-12/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD/genética
2.
Diabetes ; 57(1): 199-208, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17940120

RESUMO

OBJECTIVE: 12/15-lipoxygenase (12/15-LO), one of a family of fatty acid oxidoreductase enzymes, reacts with polyenoic fatty acids to produce proinflammatory lipids. 12/15-LO is expressed in macrophages and pancreatic beta-cells. It enhances interleukin 12 production by macrophages, and several of its products induce apoptosis of beta-cells at nanomolar concentrations in vitro. We had previously demonstrated a role for 12/15-LO in beta-cell damage in the streptozotocin model of diabetes. Since the gene encoding 12/15-LO (gene designation Alox15) lies within the Idd4 diabetes susceptibility interval in NOD mice, we hypothesized that 12/15-LO is also a key regulator of diabetes susceptibility in the NOD mouse. RESEARCH DESIGN AND METHODS: We developed NOD mice carrying an inactivated 12/15-LO locus (NOD-Alox15(null)) using a "speed congenic" protocol, and the mice were monitored for development of insulitis and diabetes. RESULTS: NOD mice deficient in 12/15-LO develop diabetes at a markedly reduced rate compared with NOD mice (2.5 vs. >60% in females by 30 weeks). Nondiabetic female NOD-Alox15(null) mice demonstrate improved glucose tolerance, as well as significantly reduced severity of insulitis and improved beta-cell mass, when compared with age-matched nondiabetic NOD females. Disease resistance is associated with decreased numbers of islet-infiltrating activated macrophages at 4 weeks of age in NOD-Alox15(null) mice, preceding the development of insulitis. Subsequently, islet-associated infiltrates are characterized by decreased numbers of CD4(+) T cells and increased Foxp3(+) cells. CONCLUSIONS: These results suggest an important role for 12/15-LO in conferring susceptibility to autoimmune diabetes in NOD mice through its effects on macrophage recruitment or activation.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Animais , Araquidonato 12-Lipoxigenase/deficiência , Araquidonato 15-Lipoxigenase/deficiência , Mapeamento Cromossômico , DNA/genética , DNA/isolamento & purificação , Primers do DNA , Predisposição Genética para Doença , Genoma , Glicosúria/genética , Fígado/enzimologia , Ativação de Macrófagos/genética , Camundongos , Camundongos Endogâmicos NOD , Deleção de Sequência , Cauda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA