Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 247, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431911

RESUMO

3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.

2.
Adv Mater ; 32(32): e2002044, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32608038

RESUMO

A photoresist system for 3D two-photon microprinting is presented, which enables the printing of inherently nanoporous structures with mean pore sizes around 50 nm by means of self-organization on the nanoscale. A phase separation between polymerizable and chemically inert photoresist components leads to the formation of 3D co-continuous structures. Subsequent washing-out of the unpolymerized phase reveals the porous polymer structures. To characterize the volume properties of the printed structures, scanning electron microscopy images are recorded from ultramicrotome sections. In addition, the light-scattering properties of the 3D-printed material are analyzed. By adjusting the printing parameters, the porosity can be controlled during 3D printing. As an application example, a functioning miniaturized Ulbricht light-collection sphere is 3D printed and tested.

3.
Sci Adv ; 5(2): eaau9160, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30783624

RESUMO

Three-dimensional (3D) laser micro- and nanoprinting has become a versatile, reliable, and commercially available technology for the preparation of complex 3D architectures for diverse applications. However, the vast majority of structures published so far have been composed of only a single constituent material. Here, we present a system based on a microfluidic chamber integrated into a state-of-the-art laser lithography apparatus. This system is scalable in terms of the number of materials and eliminates the need to go back and forth between the lithography instrument and the chemistry room numerous times, with tedious realignment steps in between. As an application, we present 3D deterministic microstructured security features requiring seven different liquids: a nonfluorescent photoresist as backbone, two photoresists containing different fluorescent quantum dots, two photoresists with different fluorescent dyes, and two developers. Our integrated microfluidic 3D printing system opens the door to truly multimaterial 3D additive manufacturing on the micro- and nanoscale.

4.
Opt Express ; 26(26): 34274-34287, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650854

RESUMO

Laminate metamaterials lead to anisotropic material properties, which can be tailored by the contrast between the two ingredient materials within the laminate. Such tailored anisotropies are, for example, required to realize advanced invisibility cloaks, wormhole architectures, or analogues of negative refraction. The physics and mathematics of laminates is very well established in the context of the diffusion equation and mathematical equivalents thereof, such as the heat conduction equation, the electrical conduction equation, electrostatics, magnetostatics, and laminar fluid dynamics. However, the validity of the diffusion equation is often stressed for disordered optical media, because sufficiently large transmission of light is requested. As a result, the condition that all relevant transport mean free path lengths need to be small compared to all relevant geometrical dimensions, may not be fulfilled. Monte Carlo simulations can grasp the physics of this transition regime between diffusive and ballistic optics. Here, we present corresponding numerical simulations for laminates. On this basis, we discuss the resulting fundamental limitations and trade-offs for laminates.

5.
Opt Lett ; 42(10): 1998-2001, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504733

RESUMO

Within the range of validity of the stationary diffusion equation, an ideal diffusive-light invisibility cloak can make an arbitrary macroscopic object hidden inside of the cloak indistinguishable from the surroundings for all colors, polarizations, and directions of incident visible light. However, the diffusion equation for light is an approximation which becomes exact only in the limit of small coherence length. Thus, one expects that the cloak can be revealed by illumination with coherent light. The experiments presented here show that the cloaks are robust in the limit of large coherence length but can be revealed by analysis of the speckle patterns under illumination with partially coherent light. Experiments on cylindrical core-shell cloaks and corresponding theory are in good agreement.

6.
Adv Mater ; 26(38): 6566-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25146724

RESUMO

By in-situ measuring the scattered light during microstructure formation, the polymerization kinetics of three-dimensional direct laser writing are investigated in detail. Oxygen quenching, oxygen diffusion, and inhibitor depletion are shown to have substantial impact on the kinetic behavior. For typical photoresists based on multifunctional acrylates, the polymerization occurs in less than a millisecond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA