Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37886443

RESUMO

Brain tumor patients are commonly treated with radiotherapy, but the efficacy of the treatment is limited by its toxicity, particularly the risk of radionecrosis. We used human cerebral organoids to investigate the mechanisms and nature of postirradiation brain image changes commonly linked to necrosis. Irradiation of cerebral organoids lead to increased formation of ZO1+/AQP1+/CLN3+-choroid plexus (CP) structures. Increased CP formation was triggered by radiation via the NOTCH/WNT signaling pathways and associated with delayed growth and neural stem cell differentiation, but not necrosis. The effect was more pronounced in immature than in mature organoids, reflecting the clinically-observed increased radiosensitivity of the pediatric brain. Protons were more effective than X-rays at the same dose, as also observed in clinical treatments. We conclude that radiation-induced brain image-changes can be attributed to aberrant CP formation, providing a new cellular mechanism and strategy for possible countermeasures.

2.
Neurotoxicology ; 79: 40-47, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32320710

RESUMO

Ionizing radiation (IR) is increasingly used for diagnostics and therapy of severe brain diseases. However, IR also has adverse effects on the healthy brain tissue, particularly on the neuronal network. This is true for adults but even more pronounced in the developing brain of unborn and pediatric patients. Epidemiological studies on children receiving radiotherapy showed an increased risk for cognitive decline ranging from mild deficits in academic functioning to severe late effects in intellectual ability and language as a consequence of altered neuronal development and connectivity. To provide a comprehensive approach for the analysis of radiation-induced alterations in human neuronal functionality, we developed an in vitro assay by combining microelectrode array (MEA) analyses and human embryonic stem cell (hESC) derived three-dimensional neurospheres (NS). In our proof of principle study, we irradiated hESC with 1 Gy X-rays and let them spontaneously differentiate into neurons within NS. After the onset of neuronal activity, we recorded and analyzed the activity pattern of the developing neuronal networks. The network activity in NS derived from irradiated hESC was significantly reduced, whereas no differences in molecular endpoints such as cell proliferation and transcript or protein expression analyses were found. Thus, the combination of MEA analysis with a 3D model for neuronal functionality revealed radiation sequela that otherwise would not have been detected. We therefore strongly suggest combining traditional biomolecular methods with the new functional assay presented in this work to improve the risk assessment for IR-induced effects on the developing brain.


Assuntos
Células-Tronco Embrionárias Humanas/efeitos da radiação , Rede Nervosa/efeitos da radiação , Células-Tronco Neurais/efeitos da radiação , Neurogênese/efeitos da radiação , Potenciais de Ação/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Rede Nervosa/metabolismo , Células-Tronco Neurais/metabolismo , Fenótipo , Estudo de Prova de Conceito , Esferoides Celulares
3.
Biosens Bioelectron ; 100: 462-468, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28963963

RESUMO

Microelectrode array (MEA) technology in combination with three-dimensional (3D) neuronal cell models derived from human embryonic stem cells (hESC) provide an excellent tool for neurotoxicity screening. Yet, there are significant challenges in terms of data processing and analysis, since neuronal signals have very small amplitudes and the 3D structure enhances the level of background noise. Thus, neuronal signal analysis requires the application of highly sophisticated algorithms. In this study, we present a new approach optimized for the detection of spikes recorded from 3D neurospheres (NS) with a very low signal-to-noise ratio. This was achieved by extending simple threshold-based spike detection utilizing a highly sensitive algorithm named SWTTEO. This analysis procedure was applied to data obtained from hESC-derived NS grown on MEA chips. Specifically, we examined changes in the activity pattern occurring within the first ten days of electrical activity. We further analyzed the response of NS to the GABA receptor antagonist bicuculline. With this new algorithm method we obtained more reliable results compared to the simple threshold-based spike detection.


Assuntos
Potenciais de Ação , Células-Tronco Embrionárias Humanas/citologia , Rede Nervosa , Neurônios/citologia , Algoritmos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Fenômenos Eletrofisiológicos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Microeletrodos , Neurogênese , Neurônios/metabolismo
4.
PLoS One ; 11(5): e0155093, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27163610

RESUMO

Ionizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA) showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system.


Assuntos
Apoptose/efeitos da radiação , Fase G1/efeitos da radiação , Fase G2/efeitos da radiação , Pontos de Checagem da Fase M do Ciclo Celular/efeitos da radiação , Retina/efeitos da radiação , Fatores Etários , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos da radiação , Embrião de Galinha , Relação Dose-Resposta à Radiação , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Retina/citologia , Retina/metabolismo , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA