Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 163, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745280

RESUMO

Spontaneous fermentation of cereals like millet involves a diverse population of microbes from various sources, including raw materials, processing equipment, fermenting receptacles, and the environment. Here, we present data on the predominant microbial species and their succession at each stage of the Hausa koko production process from five regions of Ghana. The isolates were enumerated using selective media, purified, and phenotypically characterised. The LAB isolates were further characterised by 16S rRNA Sanger sequencing, typed using (GTG)5 repetitive-PCR, and whole genome sequencing, while 28S rRNA Sanger sequencing was performed for yeast identification. The pH of the millet grains ranged from mean values of 6.02-6.53 to 3.51-3.99 in the final product, depending on the processors. The mean LAB and yeast counts increased during fermentation then fell to final counts of log 2.77-3.95 CFU/g for LAB and log 2.10-2.98 CFU/g for yeast in Hausa koko samples. At the various processing stages, the counts of LAB and yeast revealed significant variations (p < 0.0001). The species of LAB identified in this study were Limosilactobacillus pontis, Pediococcus acidilactici, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Pediococcus pentosaceus, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, Schleiferilactobacillus harbinensis, and Weissella confusa. The yeasts were Saccharomyces cf. cerevisiae/paradoxus, Saccharomyces cerevisiae, Pichia kudriavzevii, Clavispora lusitaniae and Candida tropicalis. The identification and sequencing of these novel isolates and how they change during the fermentation process will pave the way for future controlled fermentation, safer starter cultures, and identifying optimal stages for starter culture addition or nutritional interventions. These LAB and yeast species are linked to many indigenous African fermented foods, potentially acting as probiotics in some cases. This result serves as the basis for further studies into the technological and probiotic potential of these Hausa koko microorganisms.


Assuntos
Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Milhetes , Leveduras , Gana , Leveduras/classificação , Leveduras/isolamento & purificação , Leveduras/genética , Leveduras/metabolismo , Alimentos Fermentados/microbiologia , Milhetes/microbiologia , Lactobacillales/classificação , Lactobacillales/isolamento & purificação , Lactobacillales/genética , Lactobacillales/metabolismo , RNA Ribossômico 16S/genética , Filogenia , Concentração de Íons de Hidrogênio , Grão Comestível/microbiologia
2.
Microb Cell Fact ; 22(1): 256, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087304

RESUMO

BACKGROUND: Gamma-aminobutyric acid (GABA) is a non-protein amino acid with neuroinhibitory, antidiabetic, and antihypertensive properties and is used as a drug for treating anxiety and depression. Some strains of lactobacilli are known to produce GABA and strengthen the gut barrier function which play an important role in ameliorating the effects caused by the pathogen on the gut barrier. The probiotic bacteria are also known to modulate the human fecal microbiota, however, the role of GABA-producing strains on the gut epithelium permeability and gut microbiota is not known. RESULTS: In this study, we report the production of high levels of GABA by potential probiotic bacterium Limosilactobacillus fermentum L18 for the first time. The kinetics of the production of GABA by L18 showed that the maximum production of GABA in the culture supernatant (CS) occurred at 24 h, whereas in fermented milk it took 48 h of fermentation. The effect of L18 on the restoration of lipopolysaccharide (LPS)-disrupted intestinal cell membrane permeability in Caco-2 monolayers showed that it significantly restored the transepithelial electrical resistance (TEER) values, by significantly increasing the levels of junction proteins, occludin and E-cadherin in L18 and LPS-treated Caco-2 cells as compared to only LPS-treated cells. The effect of GABA-secreting L18 on the metataxonome of human stool samples from healthy individuals was investigated by a batch fermentor that mimics the conditions of the human colon. Although, no differences were observed in the α and ß diversities of the L18-treated and untreated samples at 24 h, the relative abundances of bacterial families Lactobacillaceae and Bifidobacteriaceae increased in the L18-treated group, but both decreased in the untreated groups. On the other hand, the relative abundance of Enterobacteriaceae decreased in the L18 samples but it increased in the untreated samples. CONCLUSION: These results indicate that Li. fermentum L18 is a promising GABA-secreting strain that strengthens the gut epithelial barrier by increasing junction protein concentrations and positively modulating the gut microbiota. It has the potential to be used as a psychobiotic or for the production of functional foods for the management of anxiety-related illnesses.


Assuntos
Microbioma Gastrointestinal , Limosilactobacillus fermentum , Probióticos , Humanos , Células CACO-2 , Lipopolissacarídeos , Função da Barreira Intestinal , Bactérias/metabolismo , Probióticos/uso terapêutico
3.
Food Res Int ; 163: 112222, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596151

RESUMO

Lytic bacteriophages (phages) offer a great potential as biocontrol agents for spoilage Clostridium tyrobutyricum, responsible for butyric acid fermentation in semi-hard and hard ripened cheeses, resulting in late gas blowing defect. With this aim, we have isolated, identified and characterized new lytic phages of C. tyrobutyricum, and have evaluated their efficacy to control cheese late blowing by adding them to manufacture milk. Silage, soil, milk and cheese from dairy farms were screened for anti-clostridial phages, obtaining 96 isolates active against C. tyrobutyricum. According to host range, source and plaque morphology, we obtained 20 phage profiles, 8 of them (represented by phages FA3, FA21, FA29, FA52, FA58, FA67, FA70 and FA88) showing a wider host range and high quality lysis, which were further characterized. Selected isolates showed a non-contractile tail, belonging to the Siphoviridae family, and were grouped into 3 restriction profiles. Viable phages were detected after storage in sodium-magnesium buffer (SM buffer), skim milk and acidified skim milk (pH 5) for 7 d at 4 °C, 12 °C and 37 °C, although a decline in infectivity was observed in some cases. Good phage survival was also detected during semi-hard cheese manufacture and ripening (60 d), and cheese lactococci counts, pH, dry matter values, and volatile compounds were not affected by phage addition. In semi-hard cheese, phage FA67 impaired the early germination of C. tyrobutyricum spores and caused a significant decrease in clostridial vegetative cells counts at 14 d of ripening, delaying by 2 weeks the consumption of lactic acid, formation of butyric acid and appearance of late blowing symptoms, compared to the spoilt control cheese without the phage. This is the first report on the application of phage to control C. tyrobutyricum in cheese.


Assuntos
Bacteriófagos , Queijo , Clostridium tyrobutyricum , Ácido Butírico , Clostridium
4.
Protein J ; 41(1): 131-140, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35031980

RESUMO

Glucosinolates are plant natural products which on degradation by myrosinases give rise to the beneficial bioactive isothiocyanates. Recently, a myrosinase activity was detected in a Citrobacter strain isolated from soil. This enzyme was purified enabling its amino acid sequence and gene sequence (cmyr) to be determined. In order to study this myrosinase it was necessary to establish an expression system that would enable future work such as a structural determination of the protein to be carried out. The myrosinase gene was amplified, cloned and expressed in Escherichia coli with a 6XHis-tag. The heterologous expression of cmyr enabled relatively large amounts of myrosinase to be produced (3.4 mg cmyr/100 ml culture). Myrosinase activity was determined by mixing substrate and enzyme and determining glucose release. Optimum pH and temperature were determined to be pH 6.0 and 25 °C for the Ni-NTA purified protein. The kinetic parameters of the purified myrosinase were determined using sinigrin as a substrate. Km and Vmax were estimated as 0.18 mM and 0.033 mmol/min/mg respectively for sinigrin under optimum conditions and compared to other kinetic data for myrosinases. The substrate specificity of myrosinase was determined having the highest affinity for sinigrin followed by glucoiberin, progoitrin, glucoerucin, glucoraphanin and glucotropaeolin.


Assuntos
Citrobacter , Glucosinolatos , Citrobacter/genética , Citrobacter/metabolismo , Clonagem Molecular , Glucosinolatos/química , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/química , Especificidade por Substrato
5.
Front Microbiol ; 12: 681983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421842

RESUMO

Hausa koko is an indigenous porridge processed from millet in Ghana. The process involves fermentation stages, giving the characteristic organoleptic properties of the product that is produced largely at a small-scale household level and sold as a street food. Like many other indigenous foods, quality control is problematic and depends on the skills of the processor. In order to improve the quality of the product and standardize the process for large-scale production, we need a deeper understanding of the microbial processes. The aim of this study is to investigate the microbial community involved in the production of this traditional millet porridge and the metabolites produced during processing. High-throughput amplicon sequencing was used to identify the bacterial (16S rRNA V4 hypervariable region) and fungal [Intergenic Transcribed Spacer (ITS)] communities associated with the fermentation, while nuclear magnetic resonance (NMR) was used for metabolite profiling. The bacterial community diversity was reduced during the fermentation processes with an increase and predominance of lactobacilli. Other dominant bacteria in the fermentation included Pediococcus, Weissella, Lactococcus, Streptococcus, Leuconostoc, and Acetobacter. The species Limosilactobacillus fermentum and Ligilactobacillus salivarius accounted for some of the diversities within and between fermentation time points and processors. The fungal community was dominated by the genus Saccharomyces. Other genera such as Pichia, Candida, Kluyveromyces, Nakaseomyces, Torulaspora, and Cyberlindnera were also classified. The species Saccharomyces cerevisiae, Stachybotrys sansevieriae, Malassezia restricta, Cyberlindnera fabianii, and Kluyveromyces marxianus accounted for some of the diversities within some fermentation time points. The species S. sansevieria and M. restricta may have been reported for the first time in cereal fermentation. This is the most diverse microbial community reported in Hausa koko. In this study, we could identify and quantify 33 key different metabolites produced by the interactions of the microbial communities with the millet, composed of organic compounds, sugars, amino acids and intermediary compounds, and other key fermentation compounds. An increase in the concentration of organic acids in parallel with the reduction of sugars occurred during the fermentation process while an initial increase of amino acids followed by a decrease in later fermentation steps was observed.

6.
Nutrients ; 13(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072532

RESUMO

Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Inflamação/prevenção & controle , Limosilactobacillus reuteri/metabolismo , Probióticos/farmacologia , Animais , Modelos Animais de Doenças , Gliceraldeído/análogos & derivados , Gliceraldeído/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propano/metabolismo
7.
Probiotics Antimicrob Proteins ; 13(2): 398-412, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32712897

RESUMO

The gut microbiota has been identified as a target of toxic metals and a potentially crucial mediator of the bioavailability and toxicity of these metals. In this study, we show that aluminum (Al) exposure, even at low dose, affected the growth of representative strains from the human intestine via pure culture experiments. In vitro, Lactobacillus plantarum CCFM639 could bind Al on its cell surface as shown by electron microscopy and energy dispersive X-ray analysis. The potential of L. plantarum CCFM639 to reverse changes in human intestine microbiota induced by low-dose dietary Al exposure was investigated using an in vitro colonic fermentation model. Batch fermenters were inoculated with fresh stool samples from healthy adult donors and supplemented with 86 mg/L Al and/or 109 CFU of L. plantarum CCFM639. Al exposure significantly increased the relative abundances of Bacteroidetes (Prevotella), Proteobacteria (Escherichia), Actinobacteria (Collinsella), Euryarchaeota (Methanobrevibacter), and Verrucomicrobiaceae and decreased Firmicutes (Streptococcus, Roseburia, Ruminococcus, Dialister, Coprobacillus). Some changes were reversed by the inclusion of L. plantarum CCFM639. Alterations in gut microbiota induced by Al and L. plantarum CCFM639 inevitably led to changes in metabolite levels. The short-chain fatty acid (SCFAs) contents were reduced after Al exposure, but L. plantarum CCFM639 could elevate their levels. SCFAs had positive correlations with beneficial bacteria, such as Dialister, Streptococcus, Roseburia, and negative correlations with Erwinia, Escherichia, and Serratia. Therefore, dietary Al exposure altered the composition and structure of the human gut microbiota, and this was partially mitigated by L. plantarum CCFM639. This probiotic supplementation is potentially a promising and safe approach to alleviate the harmful effects of dietary Al exposure.


Assuntos
Alumínio , Microbioma Gastrointestinal , Lactobacillus plantarum , Alumínio/toxicidade , Dieta , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Técnicas In Vitro
9.
Int J Food Microbiol ; 329: 108686, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32516659

RESUMO

Clostridium tyrobutyricum has been identified as a major species associated with the late blowing defect (LBD) of semi-hard and hard cheeses, due to undesirable butyric acid fermentation. To find new strategies to control this spoilage bacterium, we investigated the delivery of a bacteriophage endolysin by a cheese starter culture. The nisin producer Lactococcus lactis subsp. lactis INIA 415 was engineered to produce the CTP1L endolysin, encoded by the virulent bacteriophage ΦCTP1 of C. tyrobutyricum and with a demonstrated lytic activity in vitro, to the cheese matrix. The presence of the nisRK two-component regulatory system in the host strain allowed constitutive expression of the endolysin under the control of the nisA promoter (PnisA), while the use of a signal peptide (SLPmod) led to successful secretion of the active endolysin to the surrounding media. Engineered lysins with a second cell wall binding domain were also tested and shown to have improved lytic activity. Transformation of L. lactis subsp. lactis INIA 415 with endolysin delivery plasmids had a detrimental effect on its ability to produce nisin in milk, but did not affect its acidifying capacity. Transformed L. lactis subsp. lactis INIA 415 were evaluated as starters in cheeses contaminated with spores of C. tyrobutyricum. Evolution of microbiological parameters, pH and dry matter of cheeses were studied, and Clostridium metabolism and LBD in cheeses were monitored by sensory and instrumental analyses during ripening. Cheese made with the parental strain L. lactis subsp. lactis INIA 415 delayed LBD by one month, attributable to the activity of the nisin, but it was not sufficient to arrest the growth of C. tyrobutyricum during ripening completely. The use of the endolysin-producing strains in cheese manufacture as single cultures also delayed the appearance of LBD by one month, attributable to the activity of the endolysin produced in situ during ripening, because nisin activity in these cheeses was very low at day 1 and undetectable from 15 days onwards. Endolysin was more effective than nisin in inhibiting Clostridium growth, since cheeses made with the CTP1L or the chimeric derivative producers only as starters showed lower LBD symptoms, higher lactic acid levels and lower concentrations of propionic and butyric acids (associated with off-flavours) than cheese made with the parental strain. Investigation of different promoters to maximise endolysin production may help to implement CTP1L as a tool to control C. tyrobutyricum by L. lactis cheese starter and reduce LBD even further.


Assuntos
Bacteriófagos , Queijo/microbiologia , Clostridium tyrobutyricum/efeitos dos fármacos , Endopeptidases/genética , Endopeptidases/farmacologia , Microbiologia de Alimentos/métodos , Lactococcus lactis/genética , Bacteriófagos/enzimologia , Bacteriófagos/genética , Lactococcus lactis/enzimologia , Nisina/farmacologia , Organismos Geneticamente Modificados
10.
Front Microbiol ; 11: 688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373098

RESUMO

Staphylococcus epidermidis is a commensal species that has been increasingly identified as a nosocomial agent. Despite the interest, little is known about the ability of S. epidermidis isolates to adapt to different ecological niches through comparisons at genotype or phenotype levels. One niche where S. epidermidis has been reported is the human gut. Here, we present three S. epidermidis strains isolated from feces and show that they are not phylogenetically distinct from S. epidermidis isolated from other human body sites. Both gut and skin strains harbored multiple genes associated with biofilm formation and showed similar levels of biofilm formation on abiotic surfaces. High-throughput physiological tests using the BIOLOG technology showed no major metabolic differences between isolates from stool, skin, or cheese, while an isolate from bovine mastitis showed more phenotypic variation. Gut and skin isolates showed the ability to metabolize glycine-conjugated bile acids and to grow in the presence of bile, but the gut isolates exhibited faster anaerobic growth compared to isolates of skin origin.

11.
Int J Syst Evol Microbiol ; 70(5): 3012-3017, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32228805

RESUMO

A novel Gram-positive, catalase negative, rod-shaped strain, FI11369T, was isolated from gari, a traditional West African fermented food derived from cassava. Based on 16S rRNA gene sequence similarity, the closest type strains were Lactobacillus xiangfangensis LMG 26013T (99.4 % similarity), Lactobacillus plajomi NBRC 107333T (99.1 %), Lactobacillus paraplantarum DSM 10667T (99.1 %), Lactobacillus pentosus DSM 20314T (99.0 %), Lactobacillus plantarum subsp. plantarum ATCC 14917T (99.0 %), Lactobacillus modestisalitolerans NBRC 107235T (98.9 %), Lactobacillus plantarum subsp. argentoratensis DSM 16365T (98.9 %) and Lactobacillus daowaiensis NCIMB 15183T (98.8 %). The genome of strain FI11369T was sequenced and the average nucleotide identity (ANI) was compared with its closest relatives. ANI analysis showed that the closest relative, L. xiangfangensis DSM 27103T, had only a 82.4 % similarity. The main fatty acids of FI11369T were saturated C16 : 0 (18.2 %), unsaturated C18 : 1 ω9c (43.8 %) and cyclopropane C19 : 0 cyclo (ω10c and/or ω6; 22.5 %). Based on the genotypic and phenotypic data obtained in this study, a novel Lactobacillus species, Lactobacillus garii sp. nov., with the type strain FI11369T (=NCIMB 15148=DSM 108249), is proposed.


Assuntos
Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Lactobacillus/classificação , Manihot/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Gana , Lactobacillus/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Sci Rep ; 10(1): 3738, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111904

RESUMO

Nisin P is a natural nisin variant, the genetic determinants for which were previously identified in the genomes of two Streptococcus species, albeit with no confirmed evidence of production. Here we describe Streptococcus agalactiae DPC7040, a human faecal isolate, which exhibits antimicrobial activity against a panel of gut and food isolates by virtue of producing nisin P. Nisin P was purified, and its predicted structure was confirmed by nanoLC-MS/MS, with both the fully modified peptide and a variant without rings B and E being identified. Additionally, we compared its spectrum of inhibition and minimum inhibitory concentration (MIC) with that of nisin A and its antimicrobial effect in a faecal fermentation in comparison with nisin A and H. We found that its antimicrobial activity was less potent than nisin A and H, and we propose a link between this reduced activity and the peptide structure.


Assuntos
Bacteriocinas/biossíntese , Nisina/biossíntese , Streptococcus agalactiae/metabolismo , Bacteriocinas/química , Humanos , Nisina/química , Streptococcus agalactiae/isolamento & purificação
13.
Appl Microbiol Biotechnol ; 104(9): 3869-3884, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32170384

RESUMO

Bacteriocins are antimicrobial peptides produced by bacteria, and their production is regarded as a desirable probiotic trait. We found that Lactobacillus gasseri LM19, a strain isolated from human milk, produces several bacteriocins, including a novel bacteriocin, gassericin M. These bacteriocins were purified from culture and synthesised to investigate their activity and potential synergy. L. gasseri LM19 was tested in a complex environment mimicking human colon conditions; it not only survived, but expressed the seven bacteriocin genes and produced short-chain fatty acids. Metagenomic analysis of these in vitro colon cultures showed that co-inoculation of L. gasseri LM19 with Clostridium perfringens gave 16S ribosomal RNA metagenomic profiles with more similarity to controls than to vessels inoculated with C. perfringens alone. These results indicate that L. gasseri LM19 could be an interesting candidate for maintaining homeostasis in the gut environment.


Assuntos
Antibacterianos/biossíntese , Bacteriocinas/biossíntese , Lactobacillus gasseri/metabolismo , Leite Humano/microbiologia , Probióticos/metabolismo , Colo/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lactobacillus gasseri/genética , Metagenoma , Família Multigênica , Técnicas de Cultura de Órgãos
14.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060027

RESUMO

Lactobacillus johnsonii FI9785 makes two capsular exopolysaccharides-a heteropolysaccharide (EPS2) encoded by the eps operon and a branched glucan homopolysaccharide (EPS1). The homopolysaccharide is synthesized in the absence of sucrose, and there are no typical glucansucrase genes in the genome. Quantitative proteomics was used to compare the wild type to a mutant where EPS production was reduced to attempt to identify proteins associated with EPS1 biosynthesis. A putative bactoprenol glycosyltransferase, FI9785_242 (242), was less abundant in the Δeps_cluster mutant strain than in the wild type. Nuclear magnetic resonance (NMR) analysis of isolated EPS showed that deletion of the FI9785_242 gene (242) prevented the accumulation of EPS1, without affecting EPS2 synthesis, while plasmid complementation restored EPS1 production. The deletion of 242 also produced a slow-growth phenotype, which could be rescued by complementation. 242 shows amino acid homology to bactoprenol glycosyltransferase GtrB, involved in O-antigen glycosylation, while in silico analysis of the neighboring gene 241 suggested that it encodes a putative flippase with homology to the GtrA superfamily. Deletion of 241 also prevented production of EPS1 and again caused a slow-growth phenotype, while plasmid complementation reinstated EPS1 synthesis. Both genes are highly conserved in L. johnsonii strains isolated from different environments. These results suggest that there may be a novel mechanism for homopolysaccharide synthesis in the Gram-positive L. johnsoniiIMPORTANCE Exopolysaccharides are key components of the surfaces of their bacterial producers, contributing to protection, microbial and host interactions, and even virulence. They also have significant applications in industry, and understanding their biosynthetic mechanisms may allow improved production of novel and valuable polymers. Four categories of bacterial exopolysaccharide biosynthesis have been described in detail, but novel enzymes and glycosylation mechanisms are still being described. Our findings that a putative bactoprenol glycosyltransferase and flippase are essential to homopolysaccharide biosynthesis in Lactobacillus johnsonii FI9785 indicate that there may be an alternative mechanism of glucan biosynthesis to the glucansucrase pathway. Disturbance of this synthesis leads to a slow-growth phenotype. Further elucidation of this biosynthesis may give insight into exopolysaccharide production and its impact on the bacterial cell.


Assuntos
Proteínas de Bactérias/genética , Glucanos/biossíntese , Lactobacillus johnsonii/genética , Polissacarídeos Bacterianos/biossíntese , Proteoma/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glucanos/genética , Lactobacillus johnsonii/metabolismo , Polissacarídeos Bacterianos/genética , Proteoma/metabolismo , Alinhamento de Sequência
15.
Sci Rep ; 9(1): 13863, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554860

RESUMO

Fermented foods play a major role in the diet of people in Africa, where a wide variety of raw materials are fermented. Understanding the microbial populations of these products would help in the design of specific starter cultures to produce standardized and safer foods. In this study, the bacterial diversity of African fermented foods produced from several raw materials (cereals, milk, cassava, honey, palm sap, and locust beans) under different conditions (household, small commercial producers or laboratory) in 8 African countries was analysed by 16S rRNA gene amplicon sequencing during the Workshop "Analysis of the Microbiomes of Naturally Fermented Foods Training Course". Results show that lactobacilli were less abundant in fermentations performed under laboratory conditions compared to artisanal or commercial fermentations. Excluding the samples produced under laboratory conditions, lactobacilli is one of the dominant groups in all the remaining samples. Genera within the order Lactobacillales dominated dairy, cereal and cassava fermentations. Genera within the order Lactobacillales, and genera Zymomonas and Bacillus were predominant in alcoholic beverages, whereas Bacillus and Lactobacillus were the dominant genera in the locust bean sample. The genus Zymomonas was reported for the first time in dairy, cereal, cassava and locust bean fermentations.


Assuntos
Alimentos Fermentados/microbiologia , Bacillus/genética , DNA Bacteriano/genética , Fermentação , Microbiologia de Alimentos , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillales/genética , Zymomonas/genética
16.
Gut Microbes ; 10(1): 1-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29584555

RESUMO

Bacteria, Archaea, Eukarya and viruses coexist in the human gut, and this coexistence is functionally balanced by symbiotic or antagonistic relationships. Antagonism is often characterized by the production of antimicrobials against other organisms occupying the same environmental niche. Indeed, close co-evolution in the gut has led to the development of specialized antimicrobials, which is attracting increased attention as these may serve as novel alternatives to antibiotics and thereby help to address the global problem of antimicrobial resistance. The gastrointestinal (GI) tract is especially suitable for finding novel antimicrobials due to the vast array of microbes that inhabit it, and a considerable number of antimicrobial producers of both wide and narrow spectrum have been described. In this review, we summarize some of the antimicrobial compounds that are produced by bacteria isolated from the gut environment, with a special focus on bacteriocins. We also evaluate the potential therapeutic application of these compounds to maintain homeostasis in the gut and the biocontrol of pathogenic bacteria.


Assuntos
Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Bacteriocinas/metabolismo , Microbioma Gastrointestinal/fisiologia , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/química , Bactérias/efeitos dos fármacos , Bacteriocinas/isolamento & purificação , Bacteriocinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase , Humanos , Simbiose
17.
Food Microbiol ; 78: 11-17, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30497591

RESUMO

Clostridium tyrobutyricum is a bacteria of concern in the cheese industry, capable of surviving the manufacturing process and causing butyric acid fermentation and late blowing defect of cheese. In this work, we implement a method based on the cell wall-binding domain (CBD) of endolysin CTP1L, which detects C. tyrobutyricum, to monitor its evolution in cheeses challenged with clostridial spores and in the presence or absence of reuterin, an anti-clostridial agent. For this purpose, total bacteria were extracted from cheese samples and C. tyrobutyricum cells were specifically labelled with the CBD of CTP1L attached to green fluorescent protein (GFP), and detected by fluorescence microscopy. By using this GFP-CBD, germinated spores were visualized on day 1 in all cheeses inoculated with clostridial spores. Vegetative cells of C. tyrobutyricum, responsible for butyric acid fermentation, were detected in cheeses without reuterin from 30 d onwards, when LBD symptoms also became evident. The number of fluorescent Clostridium cells increased during ripening in the blowing cheeses. However, vegetative cells of C. tyrobutyricum were not detected in cheese containing the antimicrobial reuterin, which also did not show LBD throughout ripening. This simple and fast method provides a helpful tool to study the evolution of C. tyrobutyricum during cheese ripening.


Assuntos
Parede Celular/metabolismo , Queijo/microbiologia , Clostridium tyrobutyricum/metabolismo , Endopeptidases/metabolismo , Microbiologia de Alimentos/métodos , Esporos Bacterianos/metabolismo , Animais , Ácido Butírico/metabolismo , Parede Celular/química , Queijo/análise , Clostridium tyrobutyricum/efeitos dos fármacos , Clostridium tyrobutyricum/crescimento & desenvolvimento , DNA Bacteriano , Feminino , Fermentação , Gliceraldeído/análogos & derivados , Gliceraldeído/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Leite/microbiologia , Imagem Óptica/métodos , Propano/farmacologia , Ovinos
18.
Sci Rep ; 8(1): 10077, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973605

RESUMO

A previously reported gene cluster encoding four nisin-like peptides, three with the same sequence (NsoA1-3) and the unique NsoA4, produced antimicrobial activity in the presence of trypsin after heterologous expression in Lactococcus lactis. Protein extracts were separated by SDS gel electrophoresis or immunoprecipitation using an antibody to the NsoA2 leader. Tryptic peptides observed by LC-MS/MS covered the complete sequence of preNsoA1-3 and part of the leader sequence of preNsoA4 and confirmed the expression and the predicted sequences of the preNsoA peptides. Further, the data revealed that the preNsoA1-3 peptides were partly modified with dehydrations and formation of lanthionine rings. A certain amount of fully modified preNsoA1-3 was observed. Details of modifications of the core peptide and the C-terminal tryptic peptide TATCGCHITGK covering rings D and E indicated that 22% of these preNsoA1-3 peptides were completely modified. A lower amount of ring formation is estimated for rings A-C. Intact masses of immunoprecipitation-derived peptides determined by LC-MS accurately matched the expected preNsoA precursor peptides. The most abundant peptides detected were preNsoA2-3-8H2O followed by preNsoA1-8H2O and other states of dehydration. The results confirm incomplete processing of preNsoA peptides in the heterologous system, with the formation of a certain amount of fully modified peptides.


Assuntos
Bacteriocinas/química , Clostridiales/química , Nisina/química , Peptídeos/química , Sequência de Aminoácidos/genética , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/genética , Clonagem Molecular , Clostridiales/genética , Microbioma Gastrointestinal/genética , Humanos , Espectrometria de Massas , Nisina/genética , Peptídeos/genética , Processamento de Proteína Pós-Traducional/genética
19.
Genome Announc ; 6(20)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773634

RESUMO

Ochrobactrum haematophilum FI11154 was isolated from kunu-zaki, a Nigerian traditional fermented millet-based food. Here, we present the first complete genome sequence of this species. The genome consists of five replicons and contains genes related to iron uptake and phosphatase activities.

20.
Cell Host Microbe ; 23(1): 77-88.e5, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29290575

RESUMO

RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections.


Assuntos
Bactérias/genética , Infecções por Enterovirus/patologia , Poliovirus/genética , Recombinação Genética/genética , Animais , Bactérias/metabolismo , Bactérias/virologia , Linhagem Celular Tumoral , Coinfecção , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliovirus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...