Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Science ; 377(6614): eabo2196, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007009

RESUMO

The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.

2.
Environ Sci Technol ; 45(10): 4468-74, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21517061

RESUMO

The oxidation state, speciation, and distribution of Fe are critical determinants of Fe reactivity in natural and engineered environments. However, it is challenging to follow dynamic changes in Fe speciation in environmental systems during progressive fluid-mineral interactions. Two common geological and aquifer materials-basalt and Fe(III) oxides-were incubated with saline fluids at 55 °C under highly reducing conditions maintained by the presence of Fe(0). We tracked changes in Fe speciation after 48 h (incipient water-rock reaction) and 10 months (extensive water-rock interaction) using synchrotron-radiation µXRF maps collected at multiple energies (ME) within the Fe K-edge. Immediate PCA analysis of the ME maps was used to optimize µXANES analyses; in turn, refitting the ME maps with end-member XANES spectra enabled us to detect and spatially resolve the entire variety of Fe-phases present in the system. After 48 h, we successfully identified and mapped the major Fe-bearing components of our samples (Fe(III) oxides, basalt, and rare olivine), as well as small quantities of incipient brucite associated with olivine. After 10 months, the Fe(III)-oxides remained stable in the presence of Fe(0), whereas significant alteration of basalt to minnesotaite and chlinochlore had occurred, providing new insights into heterogeneous Fe speciation in complex geological media under highly reducing conditions.


Assuntos
Ferro/química , Minerais/química , Ferro/análise , Oxirredução , Água do Mar/química , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...