Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6698): eadh1938, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781370

RESUMO

The molecular organization of the human neocortex historically has been studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally defined spatial domains that move beyond classic cytoarchitecture. We used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex. Integration with paired single-nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we mapped the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains.


Assuntos
Córtex Pré-Frontal Dorsolateral , Análise de Célula Única , Transcriptoma , Adulto , Humanos , Comunicação Celular , Córtex Pré-Frontal Dorsolateral/metabolismo , Perfilação da Expressão Gênica , Neurônios/metabolismo , Neurônios/fisiologia , RNA-Seq , Análise de Sequência de RNA
2.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712198

RESUMO

The hippocampus contains many unique cell types, which serve the structure's specialized functions, including learning, memory and cognition. These cells have distinct spatial topography, morphology, physiology, and connectivity, highlighting the need for transcriptome-wide profiling strategies that retain cytoarchitectural organization. Here, we generated spatially-resolved transcriptomics (SRT) and single-nucleus RNA-sequencing (snRNA-seq) data from adjacent tissue sections of the anterior human hippocampus across ten adult neurotypical donors. We defined molecular profiles for hippocampal cell types and spatial domains. Using non-negative matrix factorization and transfer learning, we integrated these data to define gene expression patterns within the snRNA-seq data and infer the expression of these patterns in the SRT data. With this approach, we leveraged existing rodent datasets that feature information on circuit connectivity and neural activity induction to make predictions about axonal projection targets and likelihood of ensemble recruitment in spatially-defined cellular populations of the human hippocampus. Finally, we integrated genome-wide association studies with transcriptomic data to identify enrichment of genetic components for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders across cell types, spatial domains, and gene expression patterns of the human hippocampus. To make this comprehensive molecular atlas accessible to the scientific community, both raw and processed data are freely available, including through interactive web applications.

3.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617294

RESUMO

Relative cell type fraction estimates in bulk RNA-sequencing data are important to control for cell composition differences across heterogenous tissue samples. Current computational tools estimate relative RNA abundances rather than cell type proportions in tissues with varying cell sizes, leading to biased estimates. We present lute, a computational tool to accurately deconvolute cell types with varying sizes. Our software wraps existing deconvolution algorithms in a standardized framework. Using simulated and real datasets, we demonstrate how lute adjusts for differences in cell sizes to improve the accuracy of cell composition. Software is available from https://bioconductor.org/packages/lute.

4.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463979

RESUMO

Importance: Habenula (Hb) pathophysiology is involved in many neuropsychiatric disorders, including schizophrenia. Deep brain stimulation and pharmacological targeting of the Hb are emerging as promising therapeutic treatments. However, little is known about the cell type-specific transcriptomic organization of the human Hb or how it is altered in schizophrenia. Objective: To define the molecular neuroanatomy of the human habenula and identify transcriptomic changes in individuals with schizophrenia compared to neurotypical controls. Design Setting and Participants: This study utilized Hb-enriched postmortem human brain tissue. Single nucleus RNA-sequencing (snRNA-seq) and single molecule fluorescent in situ hybridization (smFISH) experiments were conducted to identify molecularly defined Hb cell types and map their spatial location (n=3-7 donors). Bulk RNA-sequencing and cell type deconvolution were used to investigate transcriptomic changes in Hb-enriched tissue from 35 individuals with schizophrenia and 33 neurotypical controls. Gene expression changes associated with schizophrenia in the Hb were compared to those previously identified in the dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate. Main Outcomes and Measures: Semi-supervised snRNA-seq cell type clustering. Transcript visualization and quantification of smFISH probes. Bulk RNA-seq cell type deconvolution using reference snRNA-seq data. Schizophrenia-associated gene differential expression analysis adjusting for Hb and thalamus fractions, RNA degradation-associated quality surrogate variables, and other covariates. Cross-brain region schizophrenia-associated gene expression comparison. Results: snRNA-seq identified 17 cell type clusters across 16,437 nuclei, including 3 medial and 7 lateral Hb populations. Cell types were conserved with those identified in a rodent model. smFISH for cell type marker genes validated snRNA-seq Hb cell types and depicted the spatial organization of subpopulations. Bulk RNA-seq analyses yielded 45 schizophrenia-associated differentially expressed genes (FDR < 0.05), with 32 (71%) unique to Hb-enriched tissue. Conclusions: These results identify topographically organized cell types with distinct molecular signatures in the human Hb. They further demonstrate unique transcriptomic changes in the epithalamus associated with schizophrenia, thereby providing molecular insights into the role of Hb in neuropsychiatric disorders.

5.
bioRxiv ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38405805

RESUMO

Background: Cellular deconvolution of bulk RNA-sequencing (RNA-seq) data using single cell or nuclei RNA-seq (sc/snRNA-seq) reference data is an important strategy for estimating cell type composition in heterogeneous tissues, such as human brain. Computational methods for deconvolution have been developed and benchmarked against simulated data, pseudobulked sc/snRNA-seq data, or immunohistochemistry reference data. A major limitation in developing improved deconvolution algorithms has been the lack of integrated datasets with orthogonal measurements of gene expression and estimates of cell type proportions on the same tissue sample. Deconvolution algorithm performance has not yet been evaluated across different RNA extraction methods (cytosolic, nuclear, or whole cell RNA), different library preparation types (mRNA enrichment vs. ribosomal RNA depletion), or with matched single cell reference datasets. Results: A rich multi-assay dataset was generated in postmortem human dorsolateral prefrontal cortex (DLPFC) from 22 tissue blocks. Assays included spatially-resolved transcriptomics, snRNA-seq, bulk RNA-seq (across six library/extraction RNA-seq combinations), and RNAScope/Immunofluorescence (RNAScope/IF) for six broad cell types. The Mean Ratio method, implemented in the DeconvoBuddies R package, was developed for selecting cell type marker genes. Six computational deconvolution algorithms were evaluated in DLPFC and predicted cell type proportions were compared to orthogonal RNAScope/IF measurements. Conclusions: Bisque and hspe were the most accurate methods, were robust to differences in RNA library types and extractions. This multi-assay dataset showed that cell size differences, marker genes differentially quantified across RNA libraries, and cell composition variability in reference snRNA-seq impact the accuracy of current deconvolution methods.

6.
Elife ; 122024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38266073

RESUMO

Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections throughout the central nervous system, playing critical roles in arousal and mood, as well as various components of cognition including attention, learning, and memory. The LC-NE system is also implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are highly sensitive to degeneration in both Alzheimer's and Parkinson's disease. Despite the clinical importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to characterize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in the human brain. We provide a freely accessible resource of these data in web-accessible and downloadable formats.


Assuntos
Locus Cerúleo , Núcleo Solitário , Humanos , Perfilação da Expressão Gênica , Sistema Nervoso Central , Norepinefrina , Expressão Gênica
7.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38045413

RESUMO

The dentate gyrus of the anterior hippocampus is important for many human cognitive functions, including regulation of learning, memory, and mood. However, the postnatal development and aging of the dentate gyrus throughout the human lifespan has yet to be fully characterized in the same molecular and spatial detail as other species. Here, we generated a spatially-resolved molecular atlas of the dentate gyrus in postmortem human tissue using the 10x Genomics Visium platform to retain extranuclear transcripts and identify changes in molecular topography across the postnatal lifespan. We found enriched expression of extracellular matrix markers during infancy and increased expression of GABAergic cell-type markers GAD1, LAMP5, and CCK after infancy. While we identified a conserved gene signature for mouse neuroblasts in the granule cell layer (GCL), many of those genes are not specific to the GCL, and we found no evidence of signatures for other granule cell lineage stages at the GCL post-infancy. We identified a wide-spread hippocampal aging signature and an age-dependent increase in neuroinflammation associated genes. Our findings suggest major changes to the putative neurogenic niche after infancy and identify molecular foci of brain aging in glial and neuropil enriched tissue.

8.
Genome Biol ; 24(1): 288, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098055

RESUMO

Deconvolution of cell mixtures in "bulk" transcriptomic samples from homogenate human tissue is important for understanding disease pathologies. However, several experimental and computational challenges impede transcriptomics-based deconvolution approaches using single-cell/nucleus RNA-seq reference atlases. Cells from the brain and blood have substantially different sizes, total mRNA, and transcriptional activities, and existing approaches may quantify total mRNA instead of cell type proportions. Further, standards are lacking for the use of cell reference atlases and integrative analyses of single-cell and spatial transcriptomics data. We discuss how to approach these key challenges with orthogonal "gold standard" datasets for evaluating deconvolution methods.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , RNA Mensageiro , Tamanho Celular , Análise de Célula Única , Análise de Sequência de RNA/métodos
9.
Genome Biol ; 24(1): 233, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845779

RESUMO

We define and identify a new class of control genes for next-generation sequencing called total RNA expression genes (TREGs), which correlate with total RNA abundance in cell types of different sizes and transcriptional activity. We provide a data-driven method to identify TREGs from single-cell RNA sequencing data, allowing the estimation of total amount of RNA when restricted to quantifying a limited number of genes. We demonstrate our method in postmortem human brain using multiplex single-molecule fluorescent in situ hybridization and compare candidate TREGs against classic housekeeping genes. We identify AKT3 as a top TREG across five brain regions.


Assuntos
Encéfalo , RNA , Humanos , RNA/genética , RNA/metabolismo , Hibridização in Situ Fluorescente , Encéfalo/metabolismo , Análise de Sequência de RNA/métodos
10.
Hippocampus ; 33(9): 1009-1027, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226416

RESUMO

Activity-regulated gene (ARG) expression patterns in the hippocampus (HPC) regulate synaptic plasticity, learning, and memory, and are linked to both risk and treatment responses for many neuropsychiatric disorders. The HPC contains discrete classes of neurons with specialized functions, but cell type-specific activity-regulated transcriptional programs are not well characterized. Here, we used single-nucleus RNA-sequencing (snRNA-seq) in a mouse model of acute electroconvulsive seizures (ECS) to identify cell type-specific molecular signatures associated with induced activity in HPC neurons. We used unsupervised clustering and a priori marker genes to computationally annotate 15,990 high-quality HPC neuronal nuclei from N = 4 mice across all major HPC subregions and neuron types. Activity-induced transcriptomic responses were divergent across neuron populations, with dentate granule cells being particularly responsive to activity. Differential expression analysis identified both upregulated and downregulated cell type-specific gene sets in neurons following ECS. Within these gene sets, we identified enrichment of pathways associated with varying biological processes such as synapse organization, cellular signaling, and transcriptional regulation. Finally, we used matrix factorization to reveal continuous gene expression patterns differentially associated with cell type, ECS, and biological processes. This work provides a rich resource for interrogating activity-regulated transcriptional responses in HPC neurons at single-nuclei resolution in the context of ECS, which can provide biological insight into the roles of defined neuronal subtypes in HPC function.


Assuntos
Hipocampo , Neurônios , Camundongos , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Aprendizagem/fisiologia , Regulação da Expressão Gênica/genética , Convulsões , Expressão Gênica
11.
ArXiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37214135

RESUMO

Deconvolution of cell mixtures in "bulk" transcriptomic samples from homogenate human tissue is important for understanding the pathologies of diseases. However, several experimental and computational challenges remain in developing and implementing transcriptomics-based deconvolution approaches, especially those using a single cell/nuclei RNA-seq reference atlas, which are becoming rapidly available across many tissues. Notably, deconvolution algorithms are frequently developed using samples from tissues with similar cell sizes. However, brain tissue or immune cell populations have cell types with substantially different cell sizes, total mRNA expression, and transcriptional activity. When existing deconvolution approaches are applied to these tissues, these systematic differences in cell sizes and transcriptomic activity confound accurate cell proportion estimates and instead may quantify total mRNA content. Furthermore, there is a lack of standard reference atlases and computational approaches to facilitate integrative analyses, including not only bulk and single cell/nuclei RNA-seq data, but also new data modalities from spatial -omic or imaging approaches. New multi-assay datasets need to be collected with orthogonal data types generated from the same tissue block and the same individual, to serve as a "gold standard" for evaluating new and existing deconvolution methods. Below, we discuss these key challenges and how they can be addressed with the acquisition of new datasets and approaches to analysis.

12.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747726

RESUMO

High-resolution and multiplexed imaging techniques are giving us an increasingly detailed observation of a biological system. However, sharing, exploring, and customizing the visualization of large multidimensional images can be a challenge. Here, we introduce Samui, a performant and interactive image visualization tool that runs completely in the web browser. Samui is specifically designed for fast image visualization and annotation and enables users to browse through large images and their selected features within seconds of receiving a link. We demonstrate the broad utility of Samui with images generated with two platforms: Vizgen MERFISH and 10x Genomics Visium Spatial Gene Expression. Samui along with example datasets is available at https://samuibrowser.com.

13.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824961

RESUMO

Generation of a molecular neuroanatomical map of the human prefrontal cortex reveals novel spatial domains and cell-cell interactions relevant for psychiatric disease. The molecular organization of the human neocortex has been historically studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally-defined spatial domains that move beyond classic cytoarchitecture. Here we used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex (DLPFC). Integration with paired single nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we map the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains. Finally, we provide resources for the scientific community to explore these integrated spatial and single cell datasets at research.libd.org/spatialDLPFC/.

14.
BMC Neurosci ; 24(1): 6, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698068

RESUMO

BACKGROUND: Multispectral fluorescence imaging coupled with linear unmixing is a form of image data collection and analysis that allows for measuring multiple molecular signals in a single biological sample. Multiple fluorescent dyes, each measuring a unique molecule, are simultaneously measured and subsequently "unmixed" to provide a read-out for each molecular signal. This strategy allows for measuring highly multiplexed signals in a single data capture session, such as multiple proteins or RNAs in tissue slices or cultured cells, but can often result in mixed signals and bleed-through problems across dyes. Existing spectral unmixing algorithms are not optimized for challenging biological specimens such as post-mortem human brain tissue, and often require manual intervention to extract spectral signatures. We therefore developed an intuitive, automated, and flexible package called SUFI: spectral unmixing of fluorescent images. RESULTS: This package unmixes multispectral fluorescence images by automating the extraction of spectral signatures using vertex component analysis, and then performs one of three unmixing algorithms derived from remote sensing. We evaluate these remote sensing algorithms' performances on four unique biological datasets and compare the results to unmixing results obtained using ZEN Black software (Zeiss). We lastly integrate our unmixing pipeline into the computational tool dotdotdot, which is used to quantify individual RNA transcripts at single cell resolution in intact tissues and perform differential expression analysis, and thereby provide an end-to-end solution for multispectral fluorescence image analysis and quantification. CONCLUSIONS: In summary, we provide a robust, automated pipeline to assist biologists with improved spectral unmixing of multispectral fluorescence images.


Assuntos
Algoritmos , Software , Humanos , Animais , Camundongos , Microscopia de Fluorescência/métodos , Corantes Fluorescentes , Encéfalo/diagnóstico por imagem
15.
Neuropsychopharmacology ; 48(3): 529-539, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36369482

RESUMO

The lateral septum (LS) is a basal forebrain GABAergic region that is implicated in social novelty. However, the neural circuits and cell signaling pathways that converge on the LS to mediate social behaviors aren't well understood. Multiple lines of evidence suggest that signaling of brain-derived neurotrophic factor (BDNF) through its receptor TrkB plays important roles in social behavior. BDNF is not locally produced in LS, but we demonstrate that nearly all LS GABAergic neurons express TrkB. Local TrkB knock-down in LS neurons decreased social novelty recognition and reduced recruitment of neural activity in LS neurons in response to social novelty. Since BDNF is not synthesized in LS, we investigated which inputs to LS could serve as potential BDNF sources for controlling social novelty recognition. We demonstrate that selectively ablating inputs to LS from the basolateral amygdala (BLA), but not from ventral CA1 (vCA1), impairs social novelty recognition. Moreover, depleting BDNF selectively in BLA-LS projection neurons phenocopied the decrease in social novelty recognition caused by either local LS TrkB knockdown or ablation of BLA-LS inputs. These data support the hypothesis that BLA-LS projection neurons serve as a critical source of BDNF for activating TrkB signaling in LS neurons to control social novelty recognition.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transdução de Sinais , Neurônios GABAérgicos/metabolismo
16.
Biol Imaging ; 3: e15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487694

RESUMO

High-resolution and multiplexed imaging techniques are giving us an increasingly detailed observation of a biological system. However, sharing, exploring, and customizing the visualization of large multidimensional images can be a challenge. Here, we introduce Samui, a performant and interactive image visualization tool that runs completely in the web browser. Samui is specifically designed for fast image visualization and annotation and enables users to browse through large images and their selected features within seconds of receiving a link. We demonstrate the broad utility of Samui with images generated with two platforms: Vizgen MERFISH and 10x Genomics Visium Spatial Gene Expression. Samui along with example datasets is available at https://samuibrowser.com.

17.
Biol Imaging ; 3: e23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38510173

RESUMO

Spatially resolved transcriptomics (SRT) is a growing field that links gene expression to anatomical context. SRT approaches that use next-generation sequencing (NGS) combine RNA sequencing with histological or fluorescent imaging to generate spatial maps of gene expression in intact tissue sections. These technologies directly couple gene expression measurements with high-resolution histological or immunofluorescent images that contain rich morphological information about the tissue under study. While broad access to NGS-based spatial transcriptomic technology is now commercially available through the Visium platform from the vendor 10× Genomics, computational tools for extracting image-derived metrics for integration with gene expression data remain limited. We developed VistoSeg as a MATLAB pipeline to process, analyze and interactively visualize the high-resolution images generated in the Visium platform. VistoSeg outputs can be easily integrated with accompanying transcriptomic data to facilitate downstream analyses in common programing languages including R and Python. VistoSeg provides user-friendly tools for integrating image-derived metrics from histological and immunofluorescent images with spatially resolved gene expression data. Integration of this data enhances the ability to understand the transcriptional landscape within tissue architecture. VistoSeg is freely available at http://research.libd.org/VistoSeg/.

18.
Am J Psychiatry ; 179(9): 673-686, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35791611

RESUMO

OBJECTIVE: Posttraumatic stress disorder (PTSD) is a debilitating neuropsychiatric disease that is highly comorbid with major depressive disorder (MDD) and bipolar disorder. The overlap in symptoms is hypothesized to stem from partially shared genetics and underlying neurobiological mechanisms. To delineate conservation between transcriptional patterns across PTSD and MDD, the authors examined gene expression in the human cortex and amygdala in these disorders. METHODS: RNA sequencing was performed in the postmortem brain of two prefrontal cortex regions and two amygdala regions from donors diagnosed with PTSD (N=107) or MDD (N=109) as well as from neurotypical donors (N=109). RESULTS: The authors identified a limited number of differentially expressed genes (DEGs) specific to PTSD, with nearly all mapping to cortical versus amygdala regions. PTSD-specific DEGs were enriched in gene sets associated with downregulated immune-related pathways and microglia as well as with subpopulations of GABAergic inhibitory neurons. While a greater number of DEGs associated with MDD were identified, most overlapped with PTSD, and only a few were MDD specific. The authors used weighted gene coexpression network analysis as an orthogonal approach to confirm the observed cellular and molecular associations. CONCLUSIONS: These findings provide supporting evidence for involvement of decreased immune signaling and neuroinflammation in MDD and PTSD pathophysiology, and extend evidence that GABAergic neurons have functional significance in PTSD.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Tonsila do Cerebelo , Transtorno Depressivo Maior/psicologia , Humanos , Córtex Pré-Frontal , Transtornos de Estresse Pós-Traumáticos/psicologia , Transcriptoma/genética
19.
BMC Genomics ; 23(1): 434, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689177

RESUMO

BACKGROUND: Spatially-resolved transcriptomics has now enabled the quantification of high-throughput and transcriptome-wide gene expression in intact tissue while also retaining the spatial coordinates. Incorporating the precise spatial mapping of gene activity advances our understanding of intact tissue-specific biological processes. In order to interpret these novel spatial data types, interactive visualization tools are necessary. RESULTS: We describe spatialLIBD, an R/Bioconductor package to interactively explore spatially-resolved transcriptomics data generated with the 10x Genomics Visium platform. The package contains functions to interactively access, visualize, and inspect the observed spatial gene expression data and data-driven clusters identified with supervised or unsupervised analyses, either on the user's computer or through a web application. CONCLUSIONS: spatialLIBD is available at https://bioconductor.org/packages/spatialLIBD . It is fully compatible with SpatialExperiment and the Bioconductor ecosystem. Its functionality facilitates analyzing and interactively exploring spatially-resolved data from the Visium platform.


Assuntos
Ecossistema , Transcriptoma , Genômica , Software
20.
Brain Stimul ; 15(2): 427-433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35183789

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF). HYPOTHESIS: We hypothesized that cells expressing the Bdnf exon 1-containing isoform are important for ECS-induced structural plasticity in the piriform cortex, a highly epileptogenic region that is responsive to ECS. METHODS: We selectively labeled Bdnf exon 1-expressing neurons in mouse piriform cortex using Cre recombinase dependent on GFP technology (CRE-DOG). We then quantified changes in dendrite morphology and density of Bdnf exon 1-expressing neurons. RESULTS: Loss of promoter I-derived BDNF caused changes in spine density and morphology in Bdnf exon 1-expressing neurons following ECS. CONCLUSIONS: Promoter I-derived Bdnf is required for ECS-induced dendritic structural plasticity in Bdnf exon 1-expressing neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Eletroconvulsoterapia , Plasticidade Neuronal , Córtex Piriforme , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Neurônios/metabolismo , Córtex Piriforme/metabolismo , Regiões Promotoras Genéticas , Convulsões/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...