Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 234: 109562, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100381

RESUMO

Emerging evidence implicate the gut microbiota as a potential susceptibility factor in attention-deficit hyperactivity disorder (ADHD), a common multifactorial neurodevelopmental condition. However, little is known about the biochemical signature of ADHD, including the metabolic contribution of the microbiota via the gut-brain axis, and the relative contribution of genetics and environmental factors. Here, we perform unbiased metabolomic profiling of urine and fecal samples collected from a well-characterized Swedish twin cohort enriched for ADHD (33 ADHD, 79 non-ADHD), using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. Our results highlight sex-specific patterns in the metabolic phenotype of individuals with ADHD. Specifically, the urine profile of males, but not females, with ADHD was characterized by greater excretion of hippurate, a product of microbial-host co-metabolism that can cross the blood-brain-barrier with bioactivity of potential relevance to ADHD. This trans-genomic metabolite was also negatively correlated with IQ in males and was significantly correlated with fecal metabolites associated with gut microbial metabolism. The fecal profile of ADHD individuals was characterized by increased excretion of stearoyl-linoleoyl-glycerol, 3,7-dimethylurate, and FAD and lower amounts of glycerol 3-phosphate, thymine, 2(1H)-quinolinone, aspartate, xanthine, hypoxanthine, and orotate. These changes were independent of ADHD medication, age, and BMI. Furthermore, our specific twins' models revealed that many of these gut metabolites had a stronger genetic influence than environmental. These findings suggest that metabolic disturbances in ADHD, involving combined gut microbial and host metabolic processes, may largely derive from gene variants previously linked to behavioral symptoms in this disorder. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Microbioma Gastrointestinal , Masculino , Feminino , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Microbioma Gastrointestinal/genética , Metabolômica , Encéfalo , Barreira Hematoencefálica
2.
Mol Nutr Food Res ; 65(17): e2001175, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34272817

RESUMO

SCOPE: The aim of the present work is to determine new biomarkers of the biological effects of hesperidin in orange juice (OJ) applying a non-targeted metabolomics approach validated by targeted metabolomics analyses of compliance biomarkers. METHODS AND RESULTS: Plasma/serum and urine targeted (HPLC-MS/MS) and untargeted (1 H-NMR) metabolomics signatures are explored in a subsample with pre- and stage-1 hypertension subjects of the CITRUS study (N = 159). Volunteers received 500 mL day-1 of control drink, OJ, or hesperidin-enriched OJ (EOJ) for 12-weeks. A 6-h postprandrial study is performed at baseline. Targeted analyses reveals plasma and urine hesperetin 7-O-ß-d-glucuronide as the only metabolite differing between OJ and EOJ groups after 12-weeks consumption, and in urine is correlated with a decreased systolic blood pressure level. The non-targeted approach shows that after single dose and 12-weeks consumption of OJ and EOJ change several metabolites related with an anti-inflammatory and antioxidant actions, lower blood pressure levels and uremic toxins. CONCLUSIONS: Hesperetin 7-O-ß-d-glucuronide can be a candidate marker for distinguishing between the consumption of different hesperidin doses at 12-weeks consumption as well as a potential agent mediating blood pressure reduction. Moreover, changes in different endogenous metabolites can explain the mechanisms of action and the biological effects of hesperidin consumption.


Assuntos
Citrus sinensis/química , Hesperidina/farmacologia , Hipertensão/dietoterapia , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Feminino , Sucos de Frutas e Vegetais , Glucuronídeos/sangue , Glucuronídeos/urina , Hesperidina/análogos & derivados , Hesperidina/sangue , Hesperidina/metabolismo , Hesperidina/urina , Humanos , Hipertensão/metabolismo , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Período Pós-Prandial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA