Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(26): e2306943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38239086

RESUMO

The growing consumption of drugs of abuse together with the inefficiency of the current wastewater treatment plants toward their presence has resulted in an emergent class of pollutants. Thus, the development of alternative approaches to remediate this environmental threat is urgently needed. Microrobots, combining autonomous motion with great tunability for the development of specific tasks, have turned into promising candidates to take on the challenge. Here, hybrid urchin-like hematite (α-Fe2O3) microparticles carrying magnetite (Fe3O4) nanoparticles and surface functionalization with organic ß-cyclodextrin (CD) molecules are prepared with the aim of on-the-fly encapsulation of illicit drugs into the linked CD cavities of moving microrobots. The resulting mag-CD microrobots are tested against methamphetamine (MA), proving their ability for the removal of this psychoactive substance. A dramatically enhanced capture of MA from water with active magnetically powered microrobots when compared with static passive CD-modified particles is demonstrated. This work shows the advantages of enhanced mass transfer provided by the externally controlled magnetic navigation in microrobots that together with the versatility of their design is an efficient strategy to clean polluted waters.


Assuntos
Ciclodextrinas , Metanfetamina , Poluentes Químicos da Água , Metanfetamina/química , Ciclodextrinas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Magnetismo , Robótica , Purificação da Água/métodos , Compostos Férricos/química
2.
J Colloid Interface Sci ; 643: 447-454, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086534

RESUMO

Micromachines gain momentum in the applications for environmental remediation. Magnetic components have been used to functionalize light-responsive micromachines to achieve efficient magnetic microrobots with photodegradation activity for decomposition of environmental pollutants. However, the influence of photocatalyst itself on the trajectory of micromotors in conjunction with magnetic motion was never considered. In this work, light-powered catalysis and transversal rotating magnetic field have been independently and simultaneously applied over Fe3O4@BiVO4 microrobots to investigate the dynamics of their hybrid motion. Light exposure of microrobots results in the production of reactive oxygen species (ROS) which power the microrobots, in addition to magnetic powered motion, and have a strong influence on the magnetic trajectories, resulting in an unexpected alteration of the direction of the motion of the microrobots. We have subsequently applied such magnetic/light powered micromachines for removal of microplastics in cigarette filter residues, one of the major contributors to the microplastic pollution, and dyes via photocatalysis. Such dual orthogonal propulsion modes act independently on the motion of the micromachines; and they also bring additional functionality as photodegradation agents. Hence, the dual magnetic/photocatalytic microrobots shall find a variety of catalytic applications in different fields.

3.
ACS Nano ; 16(6): 8694-8703, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35507525

RESUMO

Titanium dental implants are a multibillion dollar market in the United States alone. The growth of a bacterial biofilm on a dental implant can cause gingivitis, implant loss, and expensive subsequent care. Herein, we demonstrate the efficient eradication of dental biofilm on titanium dental implants via swarming magnetic microrobots based on ferromagnetic (Fe3O4) and photoactive (BiVO4) materials through polyethylenimine micelles. The ferromagnetic component serves as a propulsion force using a transversal rotating magnetic field while BiVO4 is the photoactive generator of reactive oxygen species to eradicate the biofilm colonies. Such photoactive magnetically powered, precisely navigated microrobots are able to destroy biofilm colonies on titanium implants, demonstrating their use in precision medicine.


Assuntos
Implantes Dentários , Titânio , Propriedades de Superfície , Biofilmes , Fenômenos Magnéticos
4.
ACS Appl Mater Interfaces ; 13(27): 31355-31370, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34218662

RESUMO

The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 µg/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Siloxanas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/uso terapêutico , Feminino , Humanos , Teste de Materiais , Camundongos , Nanoestruturas/química , Siloxanas/química
5.
ACS Nano ; 15(6): 10067-10075, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34125533

RESUMO

The design and fabrication of active nanomaterials exhibiting multifunctional properties is a must in the so-called global "Fourth Industrial Revolution". In this sense, molecular engineering is a powerful tool to implant original capabilities on a macroscopic scale. Herein, different bioinspired 2D-MXenes have been developed via a versatile and straightforward synthetic approach. As a proof of concept, Ti3C2Tx MXene has been exploited as a highly sensitive transducing platform for the covalent assembly of active biomolecular architectures (i.e., amino acids). All pivotal properties originated from the anchored targets were proved to be successfully transferred to the resulting bioinspired 2D-MXenes. Appealing applications have been devised for these 2D-MXene prototypes showing (i) chiroptical activity, (ii) fluorescence capabilities, (iii) supramolecular π-π interactions, and (iv) stimuli-responsive molecular switchability. Overall, this work demonstrates the fabrication of programmable 2D-MXenes, taking advantage of the inherent characteristics of the implanted (bio)molecular components. Thus, the current bottleneck in the field of 2D-MXenes can be overcome after the significant findings reported here.


Assuntos
Nanoestruturas , Titânio
6.
J Phys Chem Lett ; 12(26): 6159-6164, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184906

RESUMO

Two redox and magnetically active perchlorotriphenylmethyl (•PTM) radical units have been connected as end-capping groups to a bis(phenylene)diyne chain through vinylene linkers. Negative and positive charged species have been generated, and the influence of the bridge on their stabilization is discussed. Partial reduction of the electron-withdrawing •PTM radicals results in a class-II mixed-valence system with the negative charge located on the terminal PTM units, proving the efficiency of the conjugated chain for the electron transport between the two terminal sites. Counterintuitively, the oxidation process does not occur along the electron-rich bridge but on the vinylene units. The •PTM radicals play a key role in the stabilization of the cationic species, promoting the generation of quinoidal ring segments.

7.
Chem Commun (Camb) ; 56(91): 14211-14214, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33112297

RESUMO

A push-pull-functionalized stilbene has been prepared, with an electroactive perchlorotriphenylmethyl (PTM˙) radical and dimethylamine units as electron-withdrawing and -donating moieties, respectively, showing an electrocatalytic redox-induced Z→E isomerization where the open-shell nature of PTM˙ plays a key role in the isomerization ocurrance.

8.
Chem Commun (Camb) ; 56(84): 12813-12816, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32966400

RESUMO

Thiele (Th) and tetrabenzo-Chichibabin (TBC) derivatives with terminal dibenzocycloheptatriene (DBHept) units were prepared. A clear correlation between their electronic and molecular structures was stablished. Insights into their closed- or open-shell ground states were gained, where particular contribution of the heptagonal carbocycles as end-groups was proved. Remarkably, a thermally accessible triplet diradical configuration was confirmed for the DBHept-TBC compound.

9.
Chemistry ; 26(17): 3776-3781, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31917497

RESUMO

A new persistent organic free radical has been synthetized with Br atoms occupying the ortho- and para-positions of a trityl core. After the isolation of its two propeller-like atropisomers, Plus (P) and minus (M), their absolute configurations were assigned by a combination of theoretical and experimental data. Remarkably, no hints of racemization were observed up to 60 °C for more than two hours, due to the higher steric hindrance imposed by the bulky Br atoms. Therefore, when compared to its chlorinated homologue (t1/2 =18 s at 60 °C), an outstanding stability against racemization was achieved. A circularly polarized luminescence (CPL) response of both enantiomers was detected. This free radical shows a satisfactory luminescent dissymmetry factor (|glum (592 nm)|≈0.7×10-3 ) despite its pure organic nature and low luminescence quantum yield (LQY). Improved organic magnetic CPL emitters derived from the reported structure can be envisaged thanks to the wide possibilities that Br atoms at para-positions offer for further functionalization.

10.
Angew Chem Int Ed Engl ; 58(45): 16282-16288, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31518486

RESUMO

Chiroptical properties of two chiral atropisomers of propeller-like trityl-based radical derivatives have been analyzed. A new absolute configuration (AC) assignment has been made, according to the combination of experimental and theoretical data. In this sense, their ACs have been determined through the comparison of the Cotton effects recorded by electronic circular dichroism (ECD) with the theoretical ECD of the open shell structures obtained by TD-DFT calculations. Finally, their circularly polarized luminescence (CPL) responses have been addressed. Remarkably, this is the first description of organic free radicals as intrinsic CPL emitters. Opposite signed CPL has been detected for each pair of conformers, with acceptable luminescent dissymmetry factors (|glum |≈0.5-0.8×10-3 ) considering their pure organic nature. In fact, highly efficient chiral emissions have been demonstrated, according to the comparison of |glum | with their respective absorption anisotropy factors (|gabs |). This pioneering study lays the foundations for the optimization of new magnetically active organic chiral emitters.

11.
Angew Chem Int Ed Engl ; 58(41): 14467-14471, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31322792

RESUMO

A complete experimental and theoretical study has been carried out for aromatic and quinoidal perylene-based bridges substituted with bis(diarylamine) and bis(arylimine) groups respectively. The through-bridge inter-redox site electronic couplings (VAB ) have been calculated for their respective mixed-valence radical cation and radical anion species. The unusual similitudes of the resulting VAB values for the given structures reveal the intervention of molecular shapes with balanced semi-quinoidal/semi-aromatic structures in the charge delocalization. An identical molecular object equally responding to the injection of either positive or negative charges is rare in the field of organic π-conjugated molecules. However, once probed herein for perylene-based systems, it can be extrapolated to other π-conjugated bridges. As a result, this work opens the door to the rational design of true ambipolar bulk and molecular conductors.

12.
Chemistry ; 24(51): 13523-13534, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29873847

RESUMO

A new series of electron-deficient oligothiophenes, thieno[3,4-c]pyrrole-4,6-dione oligothiophenes (OTPDn ), from the monomer to hexamer, is reported. The optical and structural properties in the neutral states have been analyzed by absorption and emission spectroscopy together with vibrational Raman spectroscopy. In their reduced forms, these molecules could stabilize both anions and dianions in similar ways. For the dianions, two independent modes of electron conjugation of the charge excess were observed: the interdione path and the interthiophene path. The interference of these two paths highlighted the existence of a singlet diradical ground electronic state and the appearance of low-energy, thermally accessible triplet states. These results provide valuable insights into the device performance of TPD-based materials and for the rational design of new high-performance organic semiconductors.

13.
Chemphyschem ; 19(12): 1465-1470, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29570949

RESUMO

A diradical dication of a 4,4'-di(bis(1,4-methylphenyl)amino)-p-terphenyl oligomer has been characterized in solid-state by Raman spectroscopy and thermo-spectroscopy together with quantum chemical calculations. The diradical character has been evaluated on the basis of the Raman spectra and as a function of temperature. A complete understanding of the nature of the changes in solid state has been provided based on a pseudo-Jahn-Teller effect, which is feasible owing to the fine balance between quinoidal/aromatic extension among consecutive rings and steric crowding. This study contributes to the further comprehension of the molecular and electronic structures of these particular diradical molecules with strong implications on the understanding of the nature of chemical bonds in the limits of high electronic correlation or π-conjugation.

14.
Chemistry ; 24(15): 3776-3783, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29239499

RESUMO

A detailed analysis is undertaken of positively charged species generated on a series of thienylenevinylene (nTV) wires terminally substituted with two perchlorotriphenylmethyl (. PTM) radical acceptor groups, . PTM-nTV-PTM. (n=2-7). Motivated by the counterintuitive key role played by holes in the nTV bridges on the operating mechanism of electron transfer in their radical anion mixed-valence derivatives, a wide combination of experimental and theoretical techniques is used, with the aim of gaining further insights into their structural location. Consequently, contributions of the . PTM units for the stabilization of the radical cations and hole localization, particularly in the case of the shortest molecular wire, are probed. In this sense, the formation of quinoidal ring segments, resulting from the coupling of the unpaired electron of the . PTM radical site with those generated along the nTV chains is found. Additionally, open-shell dications, described by the recovery of the central aromaticity and two terminal quinoidal segments, assisted by the . PTM units, are detected.

15.
Angew Chem Int Ed Engl ; 56(51): 16212-16217, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044965

RESUMO

New anthanthrone-based polycyclic scaffolds possessing peripheral crowded quinodimethanes have been prepared. While the compounds adopt a closed-shell butterfly-shaped structure in the ground state, a curved-to-planar fluxional inversion is accessible with a low energy barrier through a biradicaloid transition state. Inversion is primarily driven by the release of strain associated with steric hindrance at the peri position of the anthanthrone core; a low-lying diradical state is accessible through planarization of the core, which is attained in solution at moderate temperatures. The most significant aspect of this transformation is that planarization is also achieved by application of mild pressure in the solid state, wherein the diradical remains kinetically trapped. Complementary information from quantum chemistry, 1 H NMR, and Raman spectroscopies, together with magnetic experiments, is consistent with the formation of a nanographene-like structure that possesses radical centers localized at the exo-anthanthrone carbons bearing phenyl substituents.

16.
Chemistry ; 23(32): 7698-7702, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28452090

RESUMO

Tri(4-iodo-2,3,5,6-tetrachlorophenyl)methane (2) is reported as a general building block for the synthesis of various π-conjugated polychlorotriphenylmethyl (PTM) radicals. Three push-pull-type triphenylamine-substituted PTM radicals with different substitution patterns were prepared and all exhibited intense inter-valence charge-transfer bands and large two-photon absorption (TPA) cross sections. Moreover, increase of solvent polarity also resulted in improved TPA response. The charge-transfer character of the relevant excited states provoked the efficient photo-generation of charges, anions in the PTM and cations in the amine arms, driven by the amphoteric redox character and the small coupling between donor and acceptor.

17.
J Am Chem Soc ; 139(8): 3095-3105, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28170229

RESUMO

New stilbenoid and thiophenic compounds terminally functionalized with donor-donor, acceptor-acceptor, or donor-acceptor moieties and possessing a central [2.2]paracyclophane unit have been prepared, and their properties interpreted in terms of through-bond and through space π-electron delocalization (i.e., π-conjugations). Based on photophysical data, their excited-state properties have been described with a focus on the participation of the central [2.2]paracyclophane in competition with through-bond conjugation in the side arms. To this end, two-photon and one-photon absorption and emission spectroscopy, as a function of temperature, solvent polarity, and pressure in the solid state have been recorded. Furthermore, charge delocalization through the [2.2]paracyclophane in the neutral state and in the oxidized species (radical cations, dications and radical trications) has been investigated, allowing the elucidation of the vibrational Raman fingerprint of through-space charge delocalization. Thus, a complementary approach to both "intermolecular" excitation and charge delocalizations in [2.2]paracyclophane molecules is shown which can serve as models of charge and exciton migration in organic semiconductors.

18.
Chem Sci ; 8(12): 8106-8114, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568459

RESUMO

A new series of π-conjugated oligomers based on the 4,4 dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene vinylene repeating unit has been prepared and characterized by X-ray, electrochemical, spectroscopic (UV-Vis absorption, emission and Raman) and density functional theory methods. The oligomers in their neutral, oxidized and reduced forms have been investigated. The neutral compounds show a longer mean conjugation length than oligothiophenes and oligothiophene-vinylenes and display very rich redox chemistry with the stabilization of polycationic states of which the radical cations and dications are strong NIR absorbers, the latter displaying singlet diradicaloid character. An interesting complementarity between the sequence of aromatic-quinoidal structural segments in the radical cations and dications has been described and interpreted. Two derivatives with the 4,4 dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene vinylene unit, disubstituted either with electron donor, bis(triaryl amino) groups, or acceptors bis(dicyano-methylene) caps enforcing a quinoidal structure in the dithiophene-vinylene bridge, have been also synthesized and characterized. The radical cation of the triarylamine compound and the radical anion of the tetracyano compound similarly display hole and electron charge localization, or confinement, in the nitrogen and dicyano surrounding parts, or class II mixed valence systems, while their dication and dianion species, conversely, are open-shell diradical (i.e., polaron pair) and closed-shell (i.e., bipolaron), respectively. The preparation of these new π-conjugated oligomers gives way to the realization of compounds with new electronic properties and unique structures potentially exploitable in organic electronics.

19.
Chemistry ; 23(19): 4579-4589, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28000319

RESUMO

We have synthesized two isomeric pairs of benzo- and naphthodithiophenediones with two flanking thiophenes and characterized them by single-crystal X-ray analysis, cyclic voltammetry, steady-state optical electronic absorption and emission spectroscopies, transient absorption spectroscopy, and vibrational spectroscopies with in situ spectroelectrochemistry techniques, and then compared them with the thieno[3,2-b]thiophene-2,5-dione counterpart that we previously reported. The results show that the central acenedithiophenedione cores have quinoidal conjugation with closed-shell character. The π-extension of the quinoidal core raises (lowers) the HOMO (LUMO) energy levels of the triads, resulting in the drastic reduction of their energy gaps from approximately 2.0 eV to 1.1 eV. Owing to the electron-withdrawing nature of the carbonyl terminal group at the quinoidal core, the triads have low-lying LUMO energy levels ranging from -3.9 eV to -4.3 eV, and can be regarded as strong electron-acceptor building units. Interestingly, the pairs of structural isomers have similar electronic structures in both the neutral and charged states despite the different shapes (linear and angular) and/or symmetry (C2h and C2v ) of the acenedithiophenedione cores.

20.
Chemistry ; 22(18): 6374-81, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-26999589

RESUMO

The synthesis, characterization, and optical properties of a novel star-shaped oligothiophene with a central rigid trithienobenzene (BTT) core and diketopyrrolopyrrole (DPP) units are reported and compared with homologous linear systems based on the benzodithiophene (BDT) and the naphthodithiophene (NDT) units end capped with DPPs. This comparison is aimed at elucidating the effect of the star-shaped configuration versus linear conformation on the optical and electrical properties. Electronic and vibrational spectroscopies, together with transient absorption spectroscopy, scanning electronic microscopy, and DFT calculations are used to understand not only the molecular properties of these semiconductors, but also to analyze the supramolecular aggregation in these derivatives. We conclude that although the subject star-shaped derivative is not optimal in terms of π-conjugation, its extended BTT unit significantly favors intermolecular π-stacking interactions, which is interesting for their applications in devices. Field-effect transistors and solar cells were fabricated with these new molecular semiconductors and the performance difference discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...