Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5673, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971797

RESUMO

Microstructured molds are essential for fabricating various components ranging from precision optics and microstructured surfaces to microfluidics. However, conventional fabrication technology such as photolithography requires expensive equipment and a large number of processing steps. Here, we report a facile method to fabricate micromolds based on a reusable photoresponsive hydrogel: Uniform micropatterns are engraved into the hydrogel surface using photo masks under UV irradiation within a few minutes. Patterns are replicated using polydimethylsiloxane with minimum feature size of 40 µm and smoothness of Rq ~ 3.4 nm. After replication, the patterns can be fully erased by light thus allowing for reuse as a new mold without notable loss in performance. Utilizing greyscale lithography, patterns with different height levels can be produced within the same exposure step. We demonstrate the versatility of this method by fabricating diffractive optical elements devices and a microlens array and microfluidic device with 100 µm wide channels.

2.
ACS Appl Mater Interfaces ; 15(22): 27234-27242, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217181

RESUMO

Softness plays a key role in the deformation of soft elastic substrates at the three-phase contact line, and the acting forces lead to the formation of a wetting ridge due to elastocapillarity. The change in wetting ridge and surface profiles at different softness has a great impact on the droplet behavior in different phenomena. Commonly used materials to study soft wetting are swollen polymeric gels or polymer brushes. These materials offer no possibility to change the softness on demand. Therefore, adjustable surfaces with tunable softness are highly sought-after to achieve on-demand transition between wetting states on soft surfaces. Here, we present a photorheological physical soft gel with adjustable stiffness based on the spiropyran photoswitch that shows the formation of wetting ridges upon droplet deposition. The presented photoswitchable gels allow the creation of reversibly switchable softness patterns with microscale resolution using UV light-switching of the spiropyran molecule. Gels with varying softness are analyzed, showing a decrease in the wetting ridge height at higher gel stiffness. Furthermore, wetting ridges before and after photoswitching are visualized using confocal microscopy, showing the transition in the wetting properties from soft wetting to liquid/liquid wetting.

3.
Materials (Basel) ; 16(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903053

RESUMO

Understanding the wettability of soft surfaces is of key importance for the development of protective and repellent coatings and controlling droplet dynamics when required. There are many factors that affect the wetting and dynamic dewetting behavior of soft surfaces, such as the formation of wetting ridges, the adaptive behavior of the surface caused by the interaction of the fluid with the surface, or the presence of free oligomers that are washed out of the soft surface. In this work, we report the fabrication and characterization of three soft polydimethylsiloxane (PDMS) surfaces with elastic moduli ranging from 7 kPa to 56 kPa. The dynamic dewetting behavior of liquids with different surface tensions was studied on these surfaces, and the data show soft and adaptive wetting behavior of the soft PDMS, as well as the presence of free oligomers. Thin layers of Parylene F (PF) were introduced to the surfaces and their influence on the wetting properties was studied. We show that the thin layers of PF prevent adaptive wetting by preventing the diffusion of liquids into the soft PDMS surfaces and by causing the loss of the soft wetting state. The dewetting properties of the soft PDMS are enhanced, leading to low sliding angles of ≤10° for water, ethylene glycol, and diiodomethane. Therefore, the introduction of a thin PF layer can be used to control wetting states and to increase the dewetting behavior of soft PDMS surfaces.

4.
Materials (Basel) ; 15(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431388

RESUMO

Superrepellent surfaces, such as micro/nanostructured surfaces, are of key importance in both academia and industry for emerging applications in areas such as self-cleaning, drag reduction, and oil repellence. Engineering these surfaces is achieved through the combination of the required surface topography, such as porosity, with low-surface-energy materials. The surface topography is crucial for achieving high liquid repellence and low roll-off angles. In general, the combination of micro- and nanostructures is most promising in achieving high repellence. In this work, we report the enhancement of wetting properties of porous polymers by replication from wrinkled Parylene F (PF)-coated polydimethylsiloxane (PDMS). Fluorinated polymer foam "Fluoropor" serves as the low-surface-energy polymer. The wrinkled molds are achieved via the deposition of a thin PF layer onto the soft PDMS substrates. Through consecutive supercritical drying, superrepellent surfaces with a high surface porosity and a high water contact angle (CA) of >165° are achieved. The replicated surfaces show low roll-off angles (ROA) <10° for water and <21° for ethylene glycol. Moreover, the introduction of the micro-wrinkles to Fluoropor not only enhances its liquid repellence for water and ethylene glycol but also for liquids with low surface tension, such as n-hexadecane.

5.
Chem Ing Tech ; 94(7): 975-982, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35915768

RESUMO

Three-dimensional (3D) printing has already shown its high relevance for the fabrication of microfluidic devices in terms of precision manufacturing cycles and a wider range of materials. 3D-printable transparent fluoropolymers are highly sought after due to their high chemical and thermal resistance. Here, we present a simple one-step fabrication process via stereolithography of perfluoropolyether dimethacrylate. We demonstrate successfully printed microfluidic mixers with 800 µm circular channels for chemistry-on-chip applications. The printed chips show chemical, mechanical, and thermal resistance up to 200 °C, as well as high optical transparency. Aqueous and organic reactions are presented to demonstrate the wide potential of perfluoropolyether dimethacrylate for chemical synthesis.

6.
Nanomaterials (Basel) ; 12(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808037

RESUMO

Digital microfluidics (DMF) is a versatile platform for conducting a variety of biological and chemical assays. The most commonly used set-up for the actuation of microliter droplets is electrowetting on dielectric (EWOD), where the liquid is moved by an electrostatic force on a dielectric layer. Superhydrophobic materials are promising materials for dielectric layers, especially since the minimum contact between droplet and surface is key for low adhesion of biomolecules, as it causes droplet pinning and cross contamination. However, superhydrophobic surfaces show limitations, such as full wetting transition between Cassie and Wenzel under applied voltage, expensive and complex fabrication and difficult integration into already existing devices. Here we present Fluoropor, a superhydrophobic fluorinated polymer foam with pores on the micro/nanoscale as a dielectric layer in DMF. Fluoropor shows stable wetting properties with no significant changes in the wetting behavior, or full wetting transition, until potentials of 400 V. Furthermore, Fluoropor shows low attachment of biomolecules to the surface upon droplet movement. Due to its simple fabrication process, its resistance to adhesion of biomolecules and the fact it is capable of being integrated and exchanged as thin films into commercial DMF devices, Fluoropor is a promising material for wide application in DMF.

7.
J Mater Chem A Mater ; 9(37): 21379-21386, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34603732

RESUMO

Porous membranes with special wetting properties have attracted great interest due to their various functions and wide applications, including water filtration, selective oil/water separation and oil skimming. Special wetting properties such as superhydrophobicity can be achieved by controlling the surface chemistry as well as the surface topography of a substrate. Three-dimensional (3D) printing is a promising method for the fast and easy generation of various structures. The most common method for 3D printing of superhydrophobic materials is a two-step fabrication process: 3D printing of user-defined topographies, such as surface structures or bulk porosity, followed by a chemical post-processing with low-surface energy chemicals such as fluorinated silanes. Another common method is using a hydrophobic polymer ink to print intricate surface structures. However, the resolution of most common printers is not sufficient to produce nano-/microstructured textures, moreover, the resulting delicate surface micro- or nanostructures are very prone to abrasion. Herein, we report a simple approach for 3D printing of superhydrophobic micro-/nanoporous membranes in a single step, combining the required topography and chemistry. The bulk porosity of this material, which we term "Fluoropor", makes it insensitive to abrasion. To achieve this, a photocurable fluorinated resin is mixed with a porogen mixture and 3D printed using a stereolithography (SLA) printing process. This way, micro-/nanoporous membranes with superhydrophobic properties with static contact angles of 164° are fabricated. The pore size of the membranes can be adjusted from 30 nm to 300 nm by only changing the porogen ratio in the mixture. We show the applicability of the printed membranes for oil/water separation and the formation of Salvinia layers which are of great interest for drag reduction in maritime transportation and fouling prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA