Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(2): 436-444, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318986

RESUMO

Acute mountain sickness (AMS) typically peaks following the first night at high altitude (HA) and resolves over the next 2-3 days, but the impact of active ascent on AMS is debated. To determine the impact of ascent conditions on AMS, 78 healthy Soldiers (means ± SD; age = 26 ± 5 yr) were tested at baseline residence, transported to Taos, NM (2,845 m), hiked (n = 39) or were driven (n = 39) to HA (3,600 m), and stayed for 4 days. AMS-cerebral (AMS-C) factor score was assessed at HA twice on day 1 (HA1), five times on days 2 and 3 (HA2 and HA3), and once on day 4 (HA4). If AMS-C was ≥0.7 at any assessment, individuals were AMS susceptible (AMS+; n = 33); others were nonsusceptible (AMS-; n = 45). Daily peak AMS-C scores were analyzed. Ascent conditions (active vs. passive) did not impact the overall incidence and severity of AMS at HA1-HA4. The AMS+ group, however, demonstrated a higher (P < 0.05) AMS incidence in the active vs. passive ascent cohort on HA1 (93% vs. 56%), similar incidence on HA2 (60% vs. 78%), lower incidence (P < 0.05) on HA3 (33% vs. 67%), and similar incidence on HA4 (13% vs. 28%). The AMS+ group also demonstrated a higher (P < 0.05) AMS severity in the active vs. passive ascent cohort on HA1 (1.35 ± 0.97 vs. 0.90 ± 0.70), similar score on HA2 (1.00 ± 0.97 vs. 1.34 ± 0.70), and lower (P < 0.05) score on HA3 (0.56 ± 0.55 vs. 1.02 ± 0.75) and HA4 (0.32 ± 0.41 vs. 0.60 ± 0.72). Active compared with passive ascent accelerated the time course of AMS with more individuals sick on HA1 and less individuals sick on HA3 and HA4.NEW & NOTEWORTHY This research demonstrated that active ascent accelerated the time course but not overall incidence and severity of acute mountain sickness (AMS) following rapid ascent to 3,600 m in unacclimatized lowlanders. Active ascenders became sicker faster and recovered quicker than passive ascenders, which may be due to differences in body fluid regulation. Findings from this well-controlled large sample-size study suggest that previously reported discrepancies in the literature regarding the impact of exercise on AMS may be related to differences in the timing of AMS measurements between studies.


Assuntos
Doença da Altitude , Humanos , Adulto Jovem , Adulto , Doença da Altitude/epidemiologia , Incidência , Doença Aguda , Exercício Físico/fisiologia , Fatores de Tempo , Altitude
2.
Eur J Sport Sci ; 23(10): 2002-2010, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37051668

RESUMO

Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 µg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1ß (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.


Assuntos
Doença da Altitude , Esforço Físico , Humanos , Hipóxia , Doença da Altitude/complicações , Doença da Altitude/diagnóstico , Doença da Altitude/metabolismo , Altitude , Inflamação
3.
High Alt Med Biol ; 24(1): 19-26, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36473199

RESUMO

Bellovary, Bryanne N., Andrew D. Wells, Zachary J. Fennel, Jeremy B. Ducharme, Jonathan M. Houck, Trevor J. Mayschak, Ann L. Gibson, Scott N. Drum, and Christine M. Mermier. Could orthostatic stress responses predict acute mountain sickness susceptibility before high altitude travel? A pilot study. High Alt Med Biol. 24:19-26, 2023. Purpose: This study assessed head-up tilt (HUT) responses in relation to acute mountain sickness (AMS)-susceptibility during hypoxic exposure. Materials and Methods: Fifteen participants completed three lab visits: (1) protocol familiarization and cycle maximal oxygen consumption (VO2max) test; (2) HUT test consisting of supine rest for 20 minutes followed by 70° tilting for ≤40 minutes; and (3) 6 hours of hypobaric hypoxic exposure (4,572 m) where participants performed two 30-minute cycling bouts separated by 1 hour at a 50% VO2max workload within the first 3 hours and rested when not exercising. During HUT, systolic blood pressure (SBP), diastolic blood pressure, heart rate (HR), and variability (blood pressure variability [BPV] and HR variability [HRV]) were measured continuously. The AMS scores were determined after 6 hours of exposure. Correlations determined relationships between HUT cardiovascular responses and AMS scores. Repeated-measures analysis of variance (ANOVA) assessed differences between those with and without AMS symptoms during HUT. Results: Higher AMS scores correlated with greater change in SBP variability (r = 0.52, p = 0.048) and blunted changes in HRV (root mean square of successive differences between normal heartbeats r = 0.81, p = 0.001, percentage of adjacent normal sinus intervals that differ by more than 50 milliseconds [pNN50] r = 0.87, p < 0.001) during HUT. A pNN50 interaction (p = 0.02) suggested elevated cardiac sympathetic activity at baseline and a blunted increase in cardiac sympathetic influence throughout HUT in those with AMS (pNN50 baseline: AMS = 26.2% ± 15.3%, no AMS = 51.0% ± 13.5%; first 3 minutes into HUT: AMS = 17.2% ± 19.1%, no AMS = 17.1% ± 10.9%; end of HUT: AMS = 6.2% ± 9.1%, no AMS 11.0% ± 10.0%). Conclusions: The results suggest autonomic responses via HUT differ in AMS-susceptible individuals. Changes in HRV and BPV during HUT may be a promising predictive measurement for AMS-susceptibility, but further research is needed for confirmation.


Assuntos
Doença da Altitude , Humanos , Projetos Piloto , Altitude , Doença Aguda , Hipóxia , Frequência Cardíaca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...