Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569469

RESUMO

ß barrels are ubiquitous proteins in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. These transmembrane proteins (TMPs) execute a wide variety of tasks. For example, they can serve as transporters, receptors, membrane-bound enzymes, as well as adhesion, structural, and signaling elements. In addition, multimeric ß barrels are common structural scaffolds among many pore-forming toxins. Significant progress has been made in understanding the functional, structural, biochemical, and biophysical features of these robust and versatile proteins. One frequently encountered fundamental trait of all ß barrels is their voltage-dependent gating. This process consists of reversible or permanent conformational transitions between a large-conductance, highly permeable open state and a low-conductance, solute-restrictive closed state. Several intrinsic molecular mechanisms and environmental factors modulate this universal property of ß barrels. This review article outlines the typical signatures of voltage-dependent gating. Moreover, we discuss recent developments leading to a better qualitative understanding of the closure dynamics of these TMPs.


Assuntos
Proteínas de Membrana Transportadoras , Porinas , Porinas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Conformação Molecular , Biofísica , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
ACS Nano ; 17(11): 10857-10871, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37261404

RESUMO

Nanopores are currently utilized as powerful tools for single-molecule protein sensing. The reporting signal typically requires protein analytes to enter the nanopore interior, yet a class of these sensors has emerged that allows targeted detection free in solution. This tactic eliminates the spatial limitation of nanopore confinement. However, probing proteins outside the nanopore implies numerous challenges associated with transducing the physical interactions in the aqueous phase into a reliable electrical signature. Hence, it necessitates extensive engineering and tedious optimization routes. These obstacles have prevented the widespread adoption of these sensors. Here, we provide an experimental strategy by developing and validating single-polypeptide-chain nanopores amenable to single-molecule and bulk-phase protein detection approaches. We utilize protein engineering, as well as nanopore and nanodisc technologies, to create nanopore sensors that can be integrated with an optical platform in addition to traditional electrical recordings. Using the optical modality over an ensemble of detectors accelerates these sensors' optimization process for a specific task. It also provides insights into how the construction of these single-molecule nanopore sensors influences their performance. These outcomes form a basis for evaluating engineered nanopores beyond the fundamental limits of the resistive-pulse technique.


Assuntos
Nanoporos , Peptídeos , Proteínas/análise , Eletricidade , Nanotecnologia/métodos
3.
Nat Commun ; 14(1): 1374, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941245

RESUMO

Protein detection has wide-ranging implications in molecular diagnostics. Substantial progress has been made in protein analytics using nanopores and the resistive-pulse technique. Yet, a long-standing challenge is implementing specific interfaces for detecting proteins without the steric hindrance of the pore interior. Here, we formulate a class of sensing elements made of a programmable antibody-mimetic binder fused to a monomeric protein nanopore. This way, such a modular design significantly expands the utility of nanopore sensors to numerous proteins while preserving their architecture, specificity, and sensitivity. We prove the power of this approach by developing and validating nanopore sensors for protein analytes that drastically vary in size, charge, and structural complexity. These analytes produce unique electrical signatures that depend on their identity and quantity and the binder-analyte assembly at the nanopore tip. The outcomes of this work could impact biomedical diagnostics by providing a fundamental basis for biomarker detection in biofluids.


Assuntos
Técnicas Biossensoriais , Nanoporos , Proteínas , Nanotecnologia/métodos , Eletricidade , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...