Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 647-659, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282474

RESUMO

Succinyl-CoA synthetase (SCS) catalyzes the only step of the tricarboxylic acid cycle that leads to substrate-level phosphorylation. Some forms of SCS are specific for ADP/ATP or for GDP/GTP, while others can bind all of these nucleotides, generally with different affinities. The theory of `gatekeeper' residues has been proposed to explain the nucleotide-specificity. Gatekeeper residues lie outside the binding site and create specific electrostatic interactions with incoming nucleotides to determine whether the nucleotides can enter the binding site. To test this theory, the crystal structure of the nucleotide-binding domain in complex with Mg2+-ADP was determined, as well as the structures of four proteins with single mutations, K46ßE, K114ßD, V113ßL and L227ßF, and one with two mutations, K46ßE/K114ßD. The crystal structures show that the enzyme is specific for ADP/ATP because of interactions between the nucleotide and the binding site. Nucleotide-specificity is provided by hydrogen-bonding interactions between the adenine base and Gln20ß, Gly111ß and Val113ß. The O atom of the side chain of Gln20ß interacts with N6 of ADP, while the side-chain N atom interacts with the carbonyl O atom of Gly111ß. It is the different conformations of the backbone at Gln20ß, of the side chain of Gln20ß and of the linker that make the enzyme ATP-specific. This linker connects the two subdomains of the ATP-grasp fold and interacts differently with adenine and guanine bases. The mutant proteins have similar conformations, although the L227ßF mutant shows structural changes that disrupt the binding site for the magnesium ion. Although the K46ßE/K114ßD double mutant of Blastocystis hominis SCS binds GTP better than ATP according to kinetic assays, only the complex with Mg2+-ADP was obtained.


Assuntos
Trifosfato de Adenosina/metabolismo , Blastocystis hominis/enzimologia , Modelos Moleculares , Succinato-CoA Ligases/química , Succinato-CoA Ligases/genética , Succinato-CoA Ligases/metabolismo , Sítios de Ligação , Cristalografia por Raios X/métodos , Escherichia coli/genética , Fluorometria/métodos , Ligação de Hidrogênio , Cinética , Mutação , Ligação Proteica , Domínios Proteicos
3.
Sci Rep ; 8(1): 1960, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386631

RESUMO

Tarp (translocated actin recruiting phosphoprotein) is an effector protein common to all chlamydial species that functions to remodel the host-actin cytoskeleton during the initial stage of infection. In C. trachomatis, direct binding to actin monomers has been broadly mapped to a 100-residue region (726-825) which is predicted to be predominantly disordered, with the exception of a ~10-residue α-helical patch homologous to other WH2 actin-binding motifs. Biophysical investigations demonstrate that a Tarp726-825 construct behaves as a typical intrinsically disordered protein; within it, NMR relaxation measurements and chemical shift analysis identify the ten residue WH2-homologous region to exhibit partial α-helix formation. Isothermal titration calorimetry experiments on the same construct in the presence of monomeric G-actin show a well defined binding event with a 1:1 stoichiometry and Kd of 102 nM, whilst synchrotron radiation circular dichroism spectroscopy suggests the binding is concomitant with an increase in helical secondary structure. Furthermore, NMR experiments in the presence of G-actin indicate this interaction affects the proposed WH2-like α-helical region, supporting results from in silico docking calculations which suggest that, when folded, this α-helix binds within the actin hydrophobic cleft as seen for other actin-associated proteins.


Assuntos
Actinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Síncrotrons
4.
Biochemistry ; 56(3): 534-542, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27478903

RESUMO

Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.


Assuntos
Trifosfato de Adenosina/química , Blastocystis/genética , Guanosina Trifosfato/química , Engenharia de Proteínas , Proteínas de Protozoários/química , Succinato-CoA Ligases/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Blastocystis/enzimologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina Trifosfato/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Eletricidade Estática , Especificidade por Substrato , Succinato-CoA Ligases/genética , Succinato-CoA Ligases/metabolismo , Suínos
5.
Artigo em Inglês | MEDLINE | ID: mdl-18540067

RESUMO

Tropomyosin is a highly conserved actin-binding protein that is found in most eukaryotic cells. It is critical for actin-filament stabilization and for cooperative regulation of many actin functions. Detailed structural information on tropomyosin is very important in order to understand the mechanisms of its action. Whereas structures of isolated tropomyosin fragments have been obtained at high resolution, the atomic structure of the entire tropomyosin molecule is still unknown. Here, the crystallization and preliminary crystallographic analysis of full-length yeast tropomyosin 2 (yTm2) from Saccharomyces cerevisiae are reported. Recombinant yTm2 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 154.8, b = 49.9, c = 104.0 A, alpha = gamma = 90.0, beta = 124.0 degrees and two molecules in the asymmetric unit. A complete native X-ray diffraction data set was collected to 3.5 A resolution using synchrotron radiation.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Tropomiosina/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Maleabilidade , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/química , Tropomiosina/genética
6.
Mol Microbiol ; 68(6): 1395-405, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18452512

RESUMO

The anaerobic lifestyle of the intestinal parasite Blastocystis raises questions about the biochemistry and function of its mitochondria-like organelles. We have characterized the Blastocystis succinyl-CoA synthetase (SCS), a tricarboxylic acid cycle enzyme that conserves energy by substrate-level phosphorylation. We show that SCS localizes to the enigmatic Blastocystis organelles, indicating that these organelles might play a similar role in energy metabolism as classic mitochondria. Although analysis of residues inside the nucleotide-binding site suggests that Blastocystis SCS is GTP-specific, we demonstrate that it is ATP-specific. Homology modelling, followed by flexible docking and molecular dynamics simulations, indicates that while both ATP and GTP fit into the Blastocystis SCS active site, GTP is destabilized by electrostatic dipole interactions with Lys 42 and Lys 110, the side-chains of which lie outside the nucleotide-binding cavity. It has been proposed that residues in direct contact with the substrate determine nucleotide specificity in SCS. However, our results indicate that, in Blastocystis, an electrostatic gatekeeper controls which ligands can enter the binding site.


Assuntos
Blastocystis/citologia , Blastocystis/enzimologia , Nucleotídeos de Purina/metabolismo , Succinato-CoA Ligases/química , Animais , Sequência de Bases , Blastocystis/química , Blastocystis/genética , Infecções por Blastocystis/parasitologia , Estruturas Citoplasmáticas/química , Estruturas Citoplasmáticas/enzimologia , Estruturas Citoplasmáticas/genética , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Succinato-CoA Ligases/genética , Succinato-CoA Ligases/metabolismo , Suínos/genética
7.
J Biol Chem ; 283(4): 1902-10, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18006493

RESUMO

Tropomyosin (Tm) is an alpha-helical coiled-coil actin-binding protein present in all eukaryotes from yeast to man. Its functional role has been best described in muscle regulation; however its much wider role in cytoskeletal actin regulation is still to be clarified. Isoforms vary in size from 284 or 248 amino acids in vertebrates, to 199 and 161 amino acids in yeast, spanning from 7 to 4 actin binding sites respectively. In Saccharomyces cerevisiae, the larger yTm1 protein is produced by an internal 38-amino acid duplication, corresponding to a single actin-binding site. We have produced an ultra-short Tm with only 125 amino acids by removing both of the 38 amino acid repeats from yTm1, with the addition of an Ala-Ser extension used to mimic the essential N-terminal acetylation. This short Tm, and an M1T mutant of it, bind to actin with a similar affinity to most Tms previously studied (K(50%) approximately 0.5 microm). However, an equilibrium fluorescence binding assay shows a much greater inhibition of myosin binding to actin than any previously studied Tm. Actin cosedimentation assays show this is caused by direct competition for binding to actin. The M1T mutant shows a reduced inhibition, probably due to weaker end-to-end interactions making it easier for myosin to displace Tm. All previously characterized Tms, although able to sterically block the myosin-binding site, are able to bind to actin along with myosin. By showing that Tm can compete directly with myosin for the same binding site these new Tms provide direct evidence for the steric blocking model.


Assuntos
Actinas/química , Miosinas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Tropomiosina/química , Acetilação , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Citoesqueleto/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Músculos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Tropomiosina/genética , Tropomiosina/metabolismo
8.
J Muscle Res Cell Motil ; 28(1): 49-58, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17436057

RESUMO

We have expressed alpha & beta isoforms of mammalian striated muscle tropomyosin (Tm) and alpha-Tm carrying the D175N or E180G cardiomyopathy mutations. In each case the Tm carries an Ala-Ser N-terminal extension to mimic the acetylation of the native Tm. We show that these Ala-Ser modified proteins are good analogues of the native Tm in the assays used here. We go on to use an in vitro kinetic approach to define the assembly of actin filaments with the Tm isoforms with either a cardiac or a skeletal muscle troponin (cTn, skTn). With skTn the calcium sensitivity of the actin filament is the same for alpha & beta-Tm and there is little change with the mutant Tms. For cTn switching from alpha to beta-Tm causes an increase of calcium sensitivity of 0.2 pCa units. D175N is very similar to the wild type alpha-Tm and E180G shows a small increase in calcium sensitivity of about 0.1 pCa unit. The formation of the switched-off blocked-state of the actin filament is independent of the Tm isoform but does differ for cardiac versus skeletal Tn. The in vitro assays developed here provide a novel, simple and efficient method for assaying the behaviour of expressed thin filament proteins.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Sequência de Aminoácidos , Animais , Cardiomiopatias , Humanos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Isoformas de Proteínas/metabolismo , Coelhos , Ratos , Alinhamento de Sequência
9.
FEBS J ; 273(3): 588-600, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16420482

RESUMO

We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of alpha-tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N-terminal exon 1b which replaces the muscle-specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the alpha-helix content of Tm or on the end-to-end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N-terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the alpha-Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle alpha-Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule.


Assuntos
Éxons/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Músculo Liso Vascular/fisiologia , Tropomiosina/genética , Tropomiosina/fisiologia , Actinas/fisiologia , Processamento Alternativo , Animais , Varredura Diferencial de Calorimetria/métodos , Dicroísmo Circular/métodos , Clonagem Molecular , Dimerização , Fibroblastos/fisiologia , Desnaturação Proteica/genética , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
10.
Biophys J ; 87(6): 3922-33, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15454401

RESUMO

Differential scanning calorimetry was used to investigate the thermal unfolding of native alpha-tropomyosin (Tm), wild-type alpha-Tm expressed in Escherichia coli and the wild-type alpha-Tm carrying either of two missense mutations associated with familial hypertrophic cardiomyopathy, D175N or E180G. Recombinant alpha-Tm was expressed with an N-terminal Ala-Ser extension to substitute for the essential N-terminal acetylation of the native Tm. Native and Ala-Ser-Tm were indistinguishable in our assays. In the absence of F-actin, the thermal unfolding of Tm was reversible and the heat sorption curve of Tm with Cys-190 reduced was decomposed into two separate calorimetric domains with maxima at approximately 42 and 51 degrees C. In the presence of phalloidin-stabilized F-actin, a new cooperative transition appears at 46-47 degrees C and completely disappears after the irreversible denaturation of F-actin. A good correlation was found to exist between the maximum of this peak and the temperature of half-maximal dissociation of the F-actin/Tm complex as determined by light scattering experiments. We conclude that Tm thermal denaturation only occurs upon its dissociation from F-actin. In the presence of F-actin, D175N alpha-Tm shows a melting profile and temperature dependence of dissociation from F-actin similar to those for wild-type alpha-Tm. The actin-induced stabilization of E180G alpha-Tm is significantly less than for wild-type alpha-Tm and D175N alpha-Tm, and this property could contribute to the more severe myopathy phenotype reported for this mutation.


Assuntos
Actinas/química , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Tropomiosina/química , Substituição de Aminoácidos , Sítios de Ligação , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Temperatura , Tropomiosina/genética
11.
J Biol Chem ; 279(18): 18203-9, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-14752114

RESUMO

The specificity of tropomyosin (Tm) exon 6b for interaction with and functioning of troponin (Tn) has been studied using recombinant fibroblast Tm isoforms 5a and 5b. These isoforms differ internally by exons 6a/6b and possess non-muscle exons 1b/9d at the termini, hence they lack the primary TnT(1)-tropomyosin interaction, allowing study of exon 6 exchange in isolation from this. Using kinetic techniques to measure regulation of myosin S1 binding to actin and fluorescently labeled Tm to directly measure Tn binding, we show that binding of Tn to both isoforms is similar (0.1-0.5 microm) and both produce well regulated systems. Calcium has little effect on Tn binding to the actin.Tm complex and both exons produce a 3-fold reduction in the S1 binding rate to actin.Tm.Tn in its absence. This confirms previous results that show exon 6 has little influence on Tn affinity to actin.Tm or its ability to fully inhibit the acto-myosin interaction. Thin filaments reconstituted with Tn and Tm5a or skeletal Tm (containing exon 6b) show nearly identical calcium dependence of acto-myosin regulation. However, Tm5b produces a dramatic increase in calcium sensitivity, shifting the activation mid-point by almost an order of magnitude. This shows that exon 6 sequence and, hence, Tm structure in this region have a significant effect upon the calcium regulation of Tn. This finding supports evidence that familial hypertrophic cardiomyopathy mutations occurring adjacent to this region can effect calcium regulation.


Assuntos
Actomiosina/metabolismo , Éxons/fisiologia , Tropomiosina/genética , Troponina/metabolismo , Animais , Cálcio/farmacologia , Cardiomiopatia Hipertrófica Familiar/genética , Humanos , Cinética , Músculo Esquelético , Subfragmentos de Miosina/metabolismo , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Coelhos , Especificidade por Substrato , Tropomiosina/metabolismo , Tropomiosina/fisiologia
12.
J Biol Chem ; 278(9): 6696-701, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12475978

RESUMO

There are significant isoform differences between the skeletal and cardiac troponin complexes. Studies of the regulatory properties of these proteins have previously shown only significant differences in the calcium dependence of their regulation. Using a sensitive myosin subfragment 1 (S1) binding assay we show that in the presence of calcium, thin filaments reconstituted with either skeletal or cardiac troponin produce virtually identical S1 binding curves. However in the absence of calcium the S1 binding curves differ considerably. Combined with kinetic measurements, curve fitting to the three-state thin filament regulatory model shows the main difference is that calcium produces a 4-fold change in K(T) (the closed-open equilibrium) for the skeletal system but little change in the cardiac system. The results show a significant difference in the range of regulatory effect between the cardiac and skeletal systems that we interpret as effects upon actin-troponin (Tn)I-TnC binding equilibria. As structural data show that the Ca(2+)-bound TnC structures differ, the additional counter-intuitive result here is that with respect to myosin binding the +Ca(2+) state of the two systems is similar whereas the -Ca(2+) state differs. This shows the regulatory tuning of the troponin complex produced by isoform variation is the net result of a complex series of interactions among all the troponin components.


Assuntos
Actomiosina/química , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Troponina/química , Actinas/química , Actomiosina/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Cinética , Miosinas/química , Fosforilação , Isoformas de Proteínas , Coelhos , Espectrometria de Fluorescência , Fatores de Tempo
13.
J Biol Chem ; 277(33): 29774-80, 2002 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-12045197

RESUMO

In striated muscle the force generating acto-myosin interaction is sterically regulated by the thin filament proteins tropomyosin and troponin (Tn), with the position of tropomyosin modulated by calcium binding to troponin. Troponin itself consists of three subunits, TnI, TnC, and TnT, widely characterized as being responsible for separate aspects of the regulatory process. TnI, the inhibitory unit is released from actin upon calcium binding to TnC, while TnT performs a structural role forming a globular head region with the regulatory TnI- TnC complex with a tail anchoring it within the thin filament. We have examined the properties of TnT and the TnT(1) tail fragment (residues 1-158) upon reconstituted actin-tropomyosin filaments. Their regulatory effects have been characterized in both myosin S1 ATPase and S1 kinetic and equilibrium binding experiments. We show that both inhibit the actin-tropomyosin-activated S1 ATPase with TnT(1) producing a greater inhibitory effect. The S1 binding data show that this inhibition is not caused by the formation of the blocked B-state but by significant stabilization of the closed C-state with a 10-fold reduction in the C- to M-state equilibrium, K(T), for TnT(1). This suggests TnT has a modulatory as well as structural role, providing an explanation for its large number of alternative isoforms.


Assuntos
Troponina T/metabolismo , Animais , Hidrólise , Cinética , Músculo Esquelético/metabolismo , Ligação Proteica , Coelhos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...