Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(22): 5655-5658, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780429

RESUMO

We report on a 1 kHz, 515 nm laser system, based on a commercially available 230 W average power Yb:YAG thin-disk regenerative amplifier, developed for pumping one of the last optical parametric chirped pulse amplification (OPCPA) stages of the Allegra laser system at ELI Beamlines. To avoid problems with self-focusing of picosecond pulses, the 1030 nm output pulses are compressed and frequency doubled with an LBO crystal in vacuum. Additionally, development of a thermal management system was needed to ensure stable phase matching conditions at high average power. The resulting 515 nm pulses have an energy of more than 120 mJ with SHG efficiency of 60% and an average RMS stability of 1.1% for more than 8 h.

2.
Rev Sci Instrum ; 88(1): 013109, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147631

RESUMO

We report on the design and performance of a fiber-based, multi-channel laser amplifier seed pulse distribution system. The device is designed to condition and distribute low energy laser pulses from a mode-locked oscillator to multiple, highly synchronized, high energy amplifiers integrated into a laser beamline. Critical functions such as temporal pulse stretching well beyond 100 ps/nm, pulse picking, and fine control over the pulse delay up to 300 ps are all performed in fiber eliminating the need for bulky and expensive grating stretchers, Pockels cells, and delay lines. These functions are characterized and the system as a whole is demonstrated by seeding two high energy amplifiers in the laser beamline. The design of this system allows for complete computer control of all functions, including tuning of dispersion, and is entirely hands-free. The performance of this device and its subsystems will be relevant to those developing lasers where reliability, size, and cost are key concerns in addition to performance; this includes those developing large-scale laser systems similar to ours and also those developing table-top experiments and commercial systems.

3.
Opt Express ; 24(16): 17843-8, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505751

RESUMO

We report on a broadband OPCPA system, pumped at 515 nm by frequency doubled Yb:YAG thin disk lasers. The system delivers 11.3 mJ pulses at a central wavelength of 800 nm with a spatial beam quality of M2 = 1.25 and > 25% pump-to-signal conversion efficiency. The broadband pulses were demonstrated to be compressible to 12 fs using a chirped mirror compressor.

4.
Opt Express ; 24(6): 5728-33, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136770

RESUMO

We report on a frequency-doubled picosecond Yb:YAG thin disk regenerative amplifier, developed as a pump laser for a kilohertz repetition rate OPCPA. At a repetition rate of 1 kHz, the compressed output of the regenerative amplifier has a pulse duration of 1.2 ps and pulse energy of 90 mJ with energy stability of σ < 0.8% and M2 < 1.2. The pulses are frequency doubled in an LBO crystal yielding 42 mJ at 515 nm.

5.
Opt Express ; 22(24): 30281-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606958

RESUMO

A simple and compact scheme for synchronization of the pump and signal pulses for short-pulse OPCPA is demonstrated. Relative timing jitter of 17 fs RMS is achieved (1% of the pump pulse duration) and the system remains locked for hours. The scheme uses a balanced optical cross correlator to detect relative delays between the pump and signal pulses and can be operated with just 10's of µJ of pump energy and pJ-level signal energies.


Assuntos
Fenômenos Ópticos , Processamento de Sinais Assistido por Computador , Retroalimentação , Análise Espectral , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA