Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 175: 113353, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35121214

RESUMO

Microplastics (MPs) were sampled in three seasons from 2016 to 2018 in the Bay of Marseille, northwestern Mediterranean Sea, adjacent to a highly urbanized area. Six sites were selected according to their different characteristics (river mouth, treatment plants, protected marine area). Surface floating MPs were characterized (number, weight, typology and polymer) as was zooplankton. In addition, mussels were submerged and used to investigate ingestion. Finally, a hydrodynamic model was used to improve understanding of dispersion mechanisms. The annual averages of floating MPs values ranged from 39,217 to 514,817 items/km2. The MPs collected were mainly fragments principally composed of polyethylene and polypropylene. The mean abundance ratio (MPs/zooplankton) was 0.09. On average 87% of mussel pools were contaminated and ingested 18.73 items/100 g of flesh. Two hydrodynamic patterns were identified: the first retaining the MPs in the harbor, and the second dispersing them outside.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Baías , Monitoramento Ambiental , Mar Mediterrâneo , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Zooplâncton
2.
Opt Express ; 24(25): 28731-28738, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958516

RESUMO

We report an efficient energy-time entangled photon-pair source based on four-wave mixing in a CMOS-compatible silicon photonics ring resonator. Thanks to suitable optimization, the source shows a large spectral brightness of 400 pairs of entangled photons /s/MHz for 500 µW pump power, compatible with standard telecom dense wavelength division multiplexers. We demonstrate high-purity energy-time entanglement, i.e., free of photonic noise, with near perfect raw visibilities (> 98%) between various channel pairs in the telecom C-band. Such a compact source stands as a path towards more complex quantum photonic circuits dedicated to quantum communication systems.

3.
Langmuir ; 24(21): 12272-81, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18839968

RESUMO

Biofouling of all structures immersed in seawater constitutes an important problem, and many strategies are currently being developed to tackle it. In this context, our previous work shows that poly(ethylene glycol) monoacrylate (PEGA) macromonomer grafted on preoxidized poly(methyl methacrylate) (PMMAox) films exhibits an excellent repellency against the bovine serum albumin used as a model protein. This study aims to evaluate the following: (1) the prevention of a marine extract material adsorption by the modified surfaces and (2) the antifouling property of the PEGA-g-PMMAox substrates when immersed in natural seawater during two seasons (season 1: end of April-beginning of May 2007, and season 2: end of October-beginning of November 2007). The antifouling performances of the PEGA-g-PMMAox films are investigated for different PEG chain lengths and macromonomer concentrations into the PEGA-based coatings. These two parameters are followed as a function of the immersion time, which evolves up to 14 days. The influence of the PEGA layer on marine compounds (proteins and phospholipids) adsorption is evidenced by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). It was found that the antifouling efficiency of the PEGA-grafted surfaces increases with both PEGA concentration and PEG chain length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...