Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Med Image Anal ; 97: 103253, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38968907

RESUMO

Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.

2.
SLAS Technol ; 29(4): 100147, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796034

RESUMO

The 2019 novel coronavirus (renamed SARS-CoV-2, and generally referred to as the COVID-19 virus) has spread to 184 countries with over 1.5 million confirmed cases. Such a major viral outbreak demands early elucidation of taxonomic classification and origin of the virus genomic sequence, for strategic planning, containment, and treatment. The emerging global infectious COVID-19 disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China. The virus has gone through various pathways of evolution. Due to the continued evolution of the SARS-CoV-2 pandemic, researchers worldwide are working to mitigate, suppress its spread, and better understand it by deploying deep learning and machine learning approaches. In a general computational context for biomedical data analysis, DNA sequence classification is a crucial challenge. Several machine and deep learning techniques have been used in recent years to complete this task with some success. The classification of DNA sequences is a key research area in bioinformatics as it enables researchers to conduct genomic analysis and detect possible diseases. In this paper, three state-of-the-art deep learning-based models are proposed using two DNA sequence conversion methods. We also proposed a novel multi-transformer deep learning model and pairwise features fusion technique for DNA sequence classification. Furthermore, deep features are extracted from the last layer of the multi-transformer and used in machine-learning models for DNA sequence classification. The k-mer and one-hot encoding sequence conversion techniques have been presented. The proposed multi-transformer achieved the highest performance in COVID DNA sequence classification. Automatic identification and classification of viruses are essential to avoid an outbreak like COVID-19. It also helps in detecting the effect of viruses and drug design.

3.
IEEE J Biomed Health Inform ; 28(3): 1185-1194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446658

RESUMO

Cancer begins when healthy cells change and grow out of control, forming a mass called a tumor. Head and neck (H&N) cancers usually develop in or around the head and neck, including the mouth (oral cavity), nose and sinuses, throat (pharynx), and voice box (larynx). 4% of all cancers are H&N cancers with a very low survival rate (a five-year survival rate of 64.7%). FDG-PET/CT imaging is often used for early diagnosis and staging of H&N tumors, thus improving these patients' survival rates. This work presents a novel 3D-Inception-Residual aided with 3D depth-wise convolution and squeeze and excitation block. We introduce a 3D depth-wise convolution-inception encoder consisting of an additional 3D squeeze and excitation block and a 3D depth-wise convolution-based residual learning decoder (3D-IncNet), which not only helps to recalibrate the channel-wise features but adaptively through explicit inter-dependencies modeling but also integrate the coarse and fine features resulting in accurate tumor segmentation. We further demonstrate the effectiveness of inception-residual encoder-decoder architecture in achieving better dice scores and the impact of depth-wise convolution in lowering the computational cost. We applied random forest for survival prediction on deep, clinical, and radiomics features. Experiments are conducted on the benchmark HECKTOR21 challenge, which showed significantly better performance by surpassing the state-of-the-artwork and achieved 0.836 and 0.811 concordance index and dice scores, respectively. We made the model and code publicly available.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Cabeça , Pescoço , Face
4.
Med Image Anal ; 92: 103066, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141453

RESUMO

Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to restore a physiological blood exchange among twins. The procedure is particularly challenging, from the surgeon's side, due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility due to amniotic fluid turbidity, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation of pathological anastomoses, resulting in persistent TTTS. Computer-assisted intervention (CAI) can provide TTTS surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision (EndoVis) challenge, we released the first large-scale multi-center TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms with a focus on creating drift-free mosaics from long duration fetoscopy videos. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips of an average length of 411 frames for developing placental scene segmentation and frame registration for mosaicking techniques. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. For the segmentation task, overall baseline performed was the top performing (aggregated mIoU of 0.6763) and was the best on the vessel class (mIoU of 0.5817) while team RREB was the best on the tool (mIoU of 0.6335) and fetus (mIoU of 0.5178) classes. For the registration task, overall the baseline performed better than team SANO with an overall mean 5-frame SSIM of 0.9348. Qualitatively, it was observed that team SANO performed better in planar scenarios, while baseline was better in non-planner scenarios. The detailed analysis showed that no single team outperformed on all 6 test fetoscopic videos. The challenge provided an opportunity to create generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge, alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-center fetoscopic data, we provide a benchmark for future research in this field.


Assuntos
Transfusão Feto-Fetal , Placenta , Feminino , Humanos , Gravidez , Algoritmos , Transfusão Feto-Fetal/diagnóstico por imagem , Transfusão Feto-Fetal/cirurgia , Transfusão Feto-Fetal/patologia , Fetoscopia/métodos , Feto , Placenta/diagnóstico por imagem
5.
Artigo em Inglês | MEDLINE | ID: mdl-38090821

RESUMO

The availability of large, high-quality annotated datasets in the medical domain poses a substantial challenge in segmentation tasks. To mitigate the reliance on annotated training data, self-supervised pre-training strategies have emerged, particularly employing contrastive learning methods on dense pixel-level representations. In this work, we proposed to capitalize on intrinsic anatomical similarities within medical image data and develop a semantic segmentation framework through a self-supervised fusion network, where the availability of annotated volumes is limited. In a unified training phase, we combine segmentation loss with contrastive loss, enhancing the distinction between significant anatomical regions that adhere to the available annotations. To further improve the segmentation performance, we introduce an efficient parallel transformer module that leverages Multiview multiscale feature fusion and depth-wise features. The proposed transformer architecture, based on multiple encoders, is trained in a self-supervised manner using contrastive loss. Initially, the transformer is trained using an unlabeled dataset. We then fine-tune one encoder using data from the first stage and another encoder using a small set of annotated segmentation masks. These encoder features are subsequently concatenated for the purpose of brain tumor segmentation. The multiencoder-based transformer model yields significantly better outcomes across three medical image segmentation tasks. We validated our proposed solution by fusing images across diverse medical image segmentation challenge datasets, demonstrating its efficacy by outperforming state-of-the-art methodologies.

6.
Med Image Anal ; 90: 102957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716199

RESUMO

Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to the quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and extensive clinical efforts for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Both quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage (https://atm22.grand-challenge.org/).


Assuntos
Pneumopatias , Árvores , Humanos , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Pulmão/diagnóstico por imagem
7.
Med Image Anal ; 88: 102833, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267773

RESUMO

In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Gravidez , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Cabeça , Feto/diagnóstico por imagem , Algoritmos , Imageamento por Ressonância Magnética/métodos
8.
IEEE/ACM Trans Comput Biol Bioinform ; 20(4): 2587-2597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37028339

RESUMO

Depression is a mental disorder characterized by persistent depressed mood or loss of interest in performing activities, causing significant impairment in daily routine. Possible causes include psychological, biological, and social sources of distress. Clinical depression is the more-severe form of depression, also known as major depression or major depressive disorder. Recently, electroencephalography and speech signals have been used for early diagnosis of depression; however, they focus on moderate or severe depression. We have combined audio spectrogram and multiple frequencies of EEG signals to improve diagnostic performance. To do so, we have fused different levels of speech and EEG features to generate descriptive features and applied vision transformers and various pre-trained networks on the speech and EEG spectrum. We have conducted extensive experiments on Multimodal Open Dataset for Mental-disorder Analysis (MODMA) dataset, which showed significant improvement in performance in depression diagnosis (0.972, 0.973 and 0.973 precision, recall and F1 score respectively) for patients at the mild stage. Besides, we provided a web-based framework using Flask and provided the source code publicly.1.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Depressão/diagnóstico , Fala , Eletroencefalografia , Software
9.
IEEE J Biomed Health Inform ; 27(7): 3302-3313, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37067963

RESUMO

In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.


Assuntos
Aprendizado Profundo , Ventrículos do Coração , Humanos , Ventrículos do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Algoritmos , Átrios do Coração
10.
Entropy (Basel) ; 24(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36554113

RESUMO

To completely comprehend neurodevelopment in healthy and congenitally abnormal fetuses, quantitative analysis of the human fetal brain is essential. This analysis requires the use of automatic multi-tissue fetal brain segmentation techniques. This paper proposes an end-to-end automatic yet effective method for a multi-tissue fetal brain segmentation model called IRMMNET. It includes a inception residual encoder block (EB) and a dense spatial attention (DSAM) block, which facilitate the extraction of multi-scale fetal-brain-tissue-relevant information from multi-view MRI images, enhance the feature reuse, and substantially reduce the number of parameters of the segmentation model. Additionally, we propose three methods for predicting gestational age (GA)-GA prediction by using a 3D autoencoder, GA prediction using radiomics features, and GA prediction using the IRMMNET segmentation model's encoder. Our experiments were performed on a dataset of 80 pathological and non-pathological magnetic resonance fetal brain volume reconstructions across a range of gestational ages (20 to 33 weeks) that were manually segmented into seven different tissue categories. The results showed that the proposed fetal brain segmentation model achieved a Dice score of 0.791±0.18, outperforming the state-of-the-art methods. The radiomics-based GA prediction methods achieved the best results (RMSE: 1.42). We also demonstrated the generalization capabilities of the proposed methods for tasks such as head and neck tumor segmentation and the prediction of patients' survival days.

11.
Image Vis Comput ; 119: 104375, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068648

RESUMO

COVID-19 has severely disrupted every aspect of society and left negative impact on our life. Resisting the temptation in engaging face-to-face social connection is not as easy as we imagine. Breaking ties within social circle makes us lonely and isolated, that in turns increase the likelihood of depression related disease and even can leads to death by increasing the chance of heart disease. Not only adults, children's are equally impacted where the contribution of emotional competence to social competence has long term implications. Early identification skill for facial behaviour emotions, deficits, and expression may help to prevent the low social functioning. Deficits in young children's ability to differentiate human emotions can leads to social functioning impairment. However, the existing work focus on adult emotions recognition mostly and ignores emotion recognition in children. By considering the working of pyramidal cells in the cerebral cortex, in this paper, we present progressive lightweight shallow learning for the classification by efficiently utilizing the skip-connection for spontaneous facial behaviour recognition in children. Unlike earlier deep neural networks, we limit the alternative path for the gradient at the earlier part of the network by increase gradually with the depth of the network. Progressive ShallowNet is not only able to explore more feature space but also resolve the over-fitting issue for smaller data, due to limiting the residual path locally, making the network vulnerable to perturbations. We have conducted extensive experiments on benchmark facial behaviour analysis in children that showed significant performance gain comparatively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...