Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(15): 4991-5006, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37417896

RESUMO

We report the development and benchmark of multireference algebraic diagrammatic construction theory (MR-ADC) for the simulations of core-excited states and X-ray absorption spectra (XAS). Our work features an implementation that incorporates core-valence separation into the strict and extended second-order MR-ADC approximations (MR-ADC(2) and MR-ADC(2)-X), providing efficient access to high-energy excited states without including inner-shell orbitals in the active space. Benchmark results on a set of small molecules indicate that at equilibrium geometries, the accuracy of MR-ADC is similar to that of single-reference ADC theory when static correlation effects are not important. In this case, MR-ADC(2)-X performs similarly to single- and multireference coupled cluster methods in reproducing the experimental XAS peak spacings. We demonstrate the potential of MR-ADC for chemical systems with multiconfigurational electronic structure by calculating the K-edge XAS spectrum of the ozone molecule with a multireference character in its ground electronic state and the dissociation curve of core-excited molecular nitrogen. For ozone, the MR-ADC results agree well with the data from experimental and previous multireference studies of ozone XAS, in contrast to the results of single-reference methods, which underestimate relative peak energies and intensities. The MR-ADC methods also predict the correct shape of the core-excited nitrogen potential energy curve, and are in good agreement with accurate calculations using driven similarity renormalization group approaches. These findings suggest that MR-ADC(2) and MR-ADC(2)-X are promising methods for the XAS simulations of multireference systems and pave the way for their efficient computer implementation and applications.

2.
Chem Sci ; 14(5): 1301-1307, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756315

RESUMO

High-valent metal oxo complexes are prototypical intermediates for the activation and hydroxylation of alkyl C-H bonds. Substituting the oxo ligand with other functional groups offers the opportunity for additional C-H functionalization beyond C-O bond formation. However, few species aside from metal oxo complexes have been reported to both activate and functionalize alkyl C-H bonds. We herein report the first example of an isolated copper(iii) cyanide complex (LCuIIICN) and its C-H cyanation reactivity. We found that the redox potential (E ox) of substrates, instead of C-H bond dissociation energy, is a key determinant of the rate of PCET, suggesting an oxidative asynchronous CPET or ETPT mechanism. Among substrates with the same BDEs, those with low redox potentials transfer H atoms up to a million-fold faster. Capitalizing on this mechanistic insight, we found that LCuIIICN is highly selective for cyanation of amines, which is predisposed to oxidative asynchronous or stepwise transfer of H+/e-. Our study demonstrates that the asynchronous effect of PCET is an appealing tool for controlling the selectivity of C-H functionalization.

3.
J Chem Theory Comput ; 17(10): 6152-6165, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34553937

RESUMO

We present an implementation and benchmark of new approximations in multireference algebraic diagrammatic construction theory for simulations of neutral electronic excitations and UV/vis spectra of strongly correlated molecular systems (MR-ADC). Following our work on the first-order MR-ADC approximation [J. Chem. Phys. 2018, 149, 204113], we report the strict and extended second-order MR-ADC methods (MR-ADC(2) and MR-ADC(2)-X) that combine the description of static and dynamic electron correlation in the ground and excited electronic states without relying on state-averaged reference wave functions. We present an extensive benchmark of the new MR-ADC methods for excited states in several small molecules, including the carbon dimer, ethylene, and butadiene. Our results demonstrate that, for weakly correlated electronic states, the MR-ADC(2) and MR-ADC(2)-X methods outperform the third-order single-reference ADC approximation and are competitive with the results from equation-of-motion coupled cluster theory. For states with multireference character, the performance of the MR-ADC methods is similar to that of an N-electron valence perturbation theory. In contrast to conventional multireference perturbation theories, the MR-ADC methods have many attractive features, such as a straightforward and efficient calculation of excited-state properties and a direct access to excitations outside of the frontier (active) orbitals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA