Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(3): 1124-1136, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749700

RESUMO

Atom probe tomography (APT) is a powerful three-dimensional nanoanalyzing microscopy technique considered key in modern materials science. However, progress in the spatial reconstruction of APT data has been rather limited since the first implementation of the protocol proposed by Bas et al. in 1995. This paper proposes a simple semianalytical approach to reconstruct multilayered structures, i.e., two or more different compounds stacked perpendicular to the analysis direction. Using a field evaporation model, the general dynamic evolution of parameters involved in the reconstruction of this type of structure is estimated. Some experimental reconstructions of different structures through the implementation of this method that dynamically accommodates variations in the tomographic reconstruction parameters are presented. It is shown both experimentally and theoretically that the depth accuracy of reconstructed APT images is improved using this method. The method requires few parameters in order to be easily usable and substantially improves atom probe tomographic reconstructions of multilayered structures.

2.
Microsc Microanal ; : 1-9, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289265

RESUMO

The occurrence of multi-hit events and the separation distance between multi-hit ion pairs field evaporated from III-nitride semiconductors can potentially provide insights on neighboring chemistry, crystal structure, and field conditions. In this work, we quantify the range of variation in major III-N and III-III ion-pair separation to establish correlations with bulk composition, growth method, and ion-pair chemistry. The analysis of ion-pair separation along the AlGaN/GaN heterostructure system allows for comparison of Ga-N and Ga-Ga ion-pair separation between events evaporated from pure GaN and Al0.3Ga0.7N. From this, we aim to define a relative measure for the bond length of ion pairs within an AlGaN/GaN heterostructure. The distributions of pair separation revealed a distinct bimodal behavior that is unique to Al-N2+ ion pairs, suggesting the occurrence of both co-evaporation and molecular dissociation. Finally, we demonstrated that the two modes of ion-pair events align with the known variation in the surface electric field of the AlGaN(0001) structure. These findings demonstrate the utility of atom probe tomography in studying the crystallographic nature of nitride semiconductors.

3.
Arch Oral Biol ; 112: 104682, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32126356

RESUMO

OBJECTIVE: The aim of this study was to determine the heterogeneity in chemical composition of bovine enamel using atom probe tomography, and thereby evaluate the suitability of bovine enamel as a substitute for human enamel in in vitro dental research. DESIGN: Enamel samples from extracted bovine incisor teeth were first sectioned using a diamond saw and then milled into needle-like samples (<100 nm diameter) by focused ion beam (FIB) coupled with a scanning electron microscope (SEM). These samples were analyzed in the atom probe to acquire three-dimensional (3D) images and quantify the atomic chemistry and distribution in bovine enamel. RESULTS: For the first time, the atomic-level composition and clustering of major constituents and impurities within bovine enamel were determined and imaged. We discovered that the chemical composition of bovine enamel is spatially inhomogeneous at the atomic scale. The average bulk Ca/P ratio, ∼1.4, was in agreement with previously reported literature values from alternative conventional methods. When assessed locally at the atomic scale, the Ca/P ratio varied between 1.1 and 2.03. We also discovered that the Mg impurities were significantly segregated throughout the enamel, and such clustering influenced the variation of Ca/P ratios. The increase in Mg concentrations, near the Mg clusters, correlated with increased Ca and decreased P concentrations. CONCLUSION: The presented findings of variability in local composition should be taken into account when interpreting dental research results from bovine enamel.


Assuntos
Esmalte Dentário/ultraestrutura , Tomografia , Animais , Bovinos , Incisivo , Microscopia Eletrônica de Varredura
4.
Microsc Microanal ; 26(1): 95-101, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32014067

RESUMO

In this work, the correlation between composition and relative evaporation field was investigated by tracking the statistics of multi-hit detector events in atom probe tomography (APT). This approach is applied systematically to a GaN-based nitride heterostructure with five AlxGa1-xN layers of varying Al composition. The relative field evaporation and the percentage of multi-hit events were found to increase with higher Al concentration. Furthermore, the comparison of the relative evaporation fields of AlN with respect to the constituent ions is found to be less than GaN with respect to its constituent ions. Despite equivalent compositions between opposing interfaces of the same AlxGa1-xN interlayer, the rate of change in multiplicity exhibits a consistent asymmetric trend with a steeper slope across the AlxGa1-xN/GaN interface compared to the GaN/AlxGa1-xN interface. The AlxGa1-xN/GaN heterostructure serves as a test structure for exploring field evaporation and neighborhood chemistry, which can be applied to any material chemistry and particularly other nitride systems.

5.
Sci Rep ; 10(1): 1426, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996741

RESUMO

We report on the enhanced incorporation efficiency of magnesium dopants into facets of hexagonal hillock structures in N-polar GaN, studied by comparative analysis of GaN:Mg films grown by MOCVD on high and low hillock density GaN template layers. Total magnesium concentration in planar regions surrounding a hillock structure is comparable to that within hillock sidewall facets measured at 1.3 × 1019 cm-3 by atom probe tomography, and clustering of Mg atoms is seen in all regions of the film. Within individual hillock structures a decreased Mg cluster density is observed within hillock structures as opposed to the planar regions surrounding a hillock. Additionally, the Mg cluster radius is decreased within the hillock sidewall. The favorable incorporation of Mg is attributed to Mg dopants incorporating substitutionally for Ga during growth of semi-polar facets of the hillock structures. Enhanced p-type conductivity of GaN:Mg films grown on high hillock density template layers is verified by optical and electrical measurement.

6.
J Am Chem Soc ; 140(29): 9154-9158, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30003782

RESUMO

Understanding the 3-D distribution and nature of active sites in heterogeneous catalysts is critical to developing structure-function relationships. However, this is difficult to achieve in microporous materials as there is little relative z-contrast between active and inactive framework elements (e.g., Al, O, P, and Si), making them difficult to differentiate with electron microscopies. We have applied atom probe tomography (APT), currently the only nanometer-scale 3-D microscopy to offer routine light element contrast, to the methanol-to-hydrocarbons (MTH) catalyst SAPO-34, with Si as the active site, which may be present in the framework as either isolated Si species or clusters (islands) of Si atoms. 29Si solid-state NMR data on isotopically enriched and natural abundance materials are consistent with the presence of Si islands, and the APT results have been complemented with simulations to show the smallest detectable cluster size as a function of instrument spatial resolution and detector efficiency. We have identified significant Si-Si affinity in the materials, as well as clustering of coke deposited by the MTH reaction (13CH3OH used) and an affinity between Brønsted acid sites and coke. A comparison with simulations shows that the ultimate spatial resolution that can be attained by APT applied to molecular sieves is 0.5-1 nm. Finally, the observed 13C clusters are consistent with hydrocarbon pool mechanism intermediates that are preferentially located in regions of increased Brønsted acidity.

7.
Microsc Microanal ; 23(2): 247-254, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28327210

RESUMO

Accuracy of atom probe tomography measurements is strongly degraded by the presence of phases that have different evaporation fields. In particular, when there are perpendicular interfaces to the tip axis in the specimen, layers thicknesses are systematically biased and the resolution is degraded near the interfaces. Based on an analytical model of field evaporated emitter end-form, a new algorithm dedicated to the 3D reconstruction of multilayered samples was developed. Simulations of field evaporation of bilayer were performed to evaluate the effectiveness of the new algorithm. Compared to the standard state-of-the-art reconstruction methods, the present approach provides much more accurate analyzed volume, and the resolution is clearly improved near the interface. The ability of the algorithm to handle experimental data was also demonstrated. It is shown that the standard algorithm applied to the same data can commit an error on the layers thicknesses up to a factor 2. This new method is not constrained by the classical hemispherical specimen shape assumption.

8.
Angew Chem Int Ed Engl ; 55(37): 11173-7, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27485276

RESUMO

Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

9.
Dalton Trans ; 39(26): 6092-7, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20523953

RESUMO

Transition metal chlorides are reacted with lithium amide or ammonia under solvothermal conditions in benzene at temperatures up to 550 degrees C. The products are metal nitrides with particle sizes of a few nm. VN, NbN, CrN, MoN and WN form with a cubic rocksalt-type structure, whilst Ta(3)N(5) adopts the known orthorhombic structure. Products often contain carbon due to solvent decomposition, the carbon content is higher when ammonia is the nitrogen source, and varied to some extent from metal to metal. Analytical data shows nitrogen-deficient carbonitride compositions. Most samples crystallise with partially aggregated, regular crystallites. Some crystallise with a nanorod morphology and this was most pronounced in Ta(3)N(5), which forms high aspect ratio, single crystal nanorods when synthesised with ammonia.

10.
Inorg Chem ; 47(20): 9684-90, 2008 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-18800827

RESUMO

Solvothermal reactions of TaCl5 with LiNH2 in benzene result in nanocrystalline Ta3N5 at 500 or 550 degrees C. The approximately 25 nm Ta3N5 particles have a band gap of 2.08-2.10 eV. The same reactions in mesitylene resulted in a higher crystallization temperature and large amounts of carbon incorporation due to solvent decomposition. Reactions of Ta(NMe2)5 with LiNH2 under the same conditions resulted in TaN. Rocksalt-type MN phases are obtained for Zr, Hf, or Nb when their chlorides (ZrCl4, HfCl4, or NbCl5) or dialkylamides (M(NEtMe)4, M = Zr, Hf) are reacted with LiNH2 under similar conditions. With the amides, there is some evidence for nitrogen-rich compositions (HfN >1), and carbon is incorporated into the products through pyrolysis of the dialkylamide groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA