Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255964

RESUMO

During gastrulation and neurulation, the chordamesoderm and overlying neuroectoderm of vertebrate embryos converge under the control of a specific genetic programme to the dorsal midline, simultaneously extending along it. However, whether mechanical tensions resulting from these morphogenetic movements play a role in long-range feedback signaling that in turn regulates gene expression in the chordamesoderm and neuroectoderm is unclear. In the present work, by using a model of artificially stretched explants of Xenopus midgastrula embryos and full-transcriptome sequencing, we identified genes with altered expression in response to external mechanical stretching. Importantly, mechanically activated genes appeared to be expressed during normal development in the trunk, i.e., in the stretched region only. By contrast, genes inhibited by mechanical stretching were normally expressed in the anterior neuroectoderm, where mechanical stress is low. These results indicate that mechanical tensions may play the role of a long-range signaling factor that regulates patterning of the embryo, serving as a link coupling morphogenesis and cell differentiation.


Assuntos
4-Butirolactona , Animais , Estresse Mecânico , Xenopus laevis/genética , Expressão Gênica
2.
Epigenetics ; 17(8): 894-905, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494499

RESUMO

Hypermethylation of tumour suppressors and other aberrations of DNA methylation in tumours play a significant role in cancer progression. DNA methylation can be affected by various environmental conditions, including hypoxia. The response to hypoxia is mainly achieved through activation of the transcriptional program associated with HIF1A transcription factor. Inactivation of Von Hippel-Lindau Tumour Suppressor gene (VHL) by genetic or epigenetic events, which also induces aberrant activation of HIF1A, is the most common driver event for renal cancer. With whole-genome bisulphite sequencing and LC-MS, we demonstrated that VHL inactivation induced global genome hypermethylation in human kidney cancer cells under normoxic conditions. This effect was reverted by exogenous expression of wild-type VHL. We showed that global genome hypermethylation in VHL mutants can be explained by transcriptional changes in MDH and L2HGDH genes that cause the accumulation of 2-hydroxyglutarate - a metabolite that inhibits DNA demethylation by TET enzymes. Unlike the known cases of DNA hypermethylation in cancer, 2-hydroxyglutarate was accumulated in the cells with the wild-type isocitrate dehydrogenases.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Carcinoma de Células Renais/genética , DNA/metabolismo , Metilação de DNA , Humanos , Hipóxia/genética , Isocitrato Desidrogenase , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638562

RESUMO

Genome editing is an indispensable tool for functional genomics. The caveat of the genome-editing pipeline is a prevalence of error-prone non-homologous end joining over homologous recombination, while only the latter is suitable to introduce particularly desired genetic variants. To overcome this problem, a toolbox of genome engineering was appended by a variety of improved instruments. In this work, we compared the efficiency of a number of recently suggested improved systems for genome editing applied to the same genome regions on a murine zygote model via microinjection. As a result, we observed that homologous recombination utilizing an ssDNA template following sgRNA directed Cas9 cleavage is still the method of choice for the creation of animals with precise genome alterations.


Assuntos
Edição de Genes/métodos , Zigoto/metabolismo , Animais , Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , DNA de Cadeia Simples , Recombinação Homóloga , Camundongos , Microinjeções/métodos , Modelos Animais , RNA Guia de Cinetoplastídeos
4.
PLoS One ; 14(12): e0226485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869362

RESUMO

Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest known insect-the parasitoid wasp, Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). In contrast to expectations, we find that the genome and transcriptome sizes of this parasitoid wasp are comparable to other members of the Chalcidoidea superfamily. Moreover, compared to other chalcid wasps the gene content of M. amalphitanum is remarkably conserved. Intriguingly, we observed significant changes in M. amalphitanum transposable element dynamics over time, in which an initial burst was followed by suppression of activity, possibly due to a recent reinforcement of the genome defense machinery. Overall, while the M. amalphitanum genomic data reveal certain features that may be linked to the unusual biological properties of this organism, miniaturization is not associated with a large decrease in genome complexity.


Assuntos
Tamanho Corporal/genética , Genoma de Inseto , Vespas/genética , Adaptação Biológica/genética , Animais , Mapeamento Cromossômico , Ecossistema , Evolução Molecular , Genes de Insetos , Especiação Genética , Interações Hospedeiro-Parasita/genética , Sistema Imunitário/metabolismo , Anotação de Sequência Molecular , Análise de Sequência de DNA , Transcriptoma/genética , Peçonhas/genética , Vespas/anatomia & histologia , Vespas/imunologia , Vespas/patogenicidade
5.
Sci Rep ; 8(1): 10667, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006568

RESUMO

VHL inactivation is a key oncogenic event for renal carcinomas. In normoxia, VHL suppresses HIF1a-mediated transcriptional response, which is characteristic to hypoxia. It has previously been shown that hypoxic conditions inhibit TET-dependent hydroxymethylation of cytosines and cause DNA hypermethylation at gene promoters. In this work, we performed VHL inactivation by CRISPR/Cas9 and studied its effects on gene expression and DNA methylation. We showed that even without hypoxia, VHL inactivation leads to hypermethylation of the genome. Hypermethylated cytosines were evenly distributed throughout the genome with a slight preference for AP-1 (JUN and FOS) binding sites. Hypermethylated cytosines tended to be enriched within the binding sites of transcription factors that showed increased gene expression after VHL inactivation. We also observed promoter hypermethylation associated with decreased gene expression for several regulators of transcription and DNA methylation including SALL3.


Assuntos
Carcinoma de Células Renais/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Sistemas CRISPR-Cas/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Citosina/metabolismo , Inativação Gênica , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/patologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hipóxia Tumoral , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
6.
Mitochondrial DNA B Resour ; 3(1): 393-394, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33474180

RESUMO

The complete chloroplast genome sequence of Allium obliquum was determined by Illumina single-end sequencing. The complete plastid genome was 152,387 bp in length, containing a large single copy (LSC) of 81,588 bp and a small single copy (SSC) of 18,059 bp, which were separated by a pair of 26,370 bp inverted repeats (IRs). A total of 134 genes were annotated, including 83 protein coding genes, 38 tRNA genes, eight rRNA genes, and five pseudogenes. The overall GC contents of the plastid genome were 36.8%. Unlike A. cepa (onion) and A. sativum (garlic), A. obliquum encodes a functional intact infA gene.

7.
Mol Biol Evol ; 34(9): 2203-2213, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28873953

RESUMO

The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment.


Assuntos
Adaptação Fisiológica/genética , Epigênese Genética/genética , Smegmamorpha/genética , Aclimatação/genética , Amilopectina , Animais , Evolução Biológica , Metilação de DNA/genética , Evolução Molecular , Água Doce , Variação Genética/genética , Estudo de Associação Genômica Ampla , Modelos Genéticos , Água do Mar , Seleção Genética/genética
8.
Genom Data ; 11: 60-61, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27995074

RESUMO

Monotropa hypopitys (pinesap) is a non-photosynthetic obligately mycoheterotrophic plant of the family Ericaceae. It obtains the carbon and other nutrients from the roots of surrounding autotrophic trees through the associated mycorrhizal fungi. In order to understand the evolutionary changes in the plant genome associated with transition to a heterotrophic lifestyle, we performed de novo transcriptomic analysis of M. hypopitys using next-generation sequencing. We obtained the RNA-Seq data from flowers, flower bracts and roots with haustoria using Illumina HiSeq2500 platform. The raw data obtained in this study can be available in NCBI SRA database with accession number of SRP069226. A total of 10.3 GB raw sequence data were obtained, corresponding to 103,357,809 raw reads. A total of 103,025,683 reads were filtered after removing low-quality reads and trimming the adapter sequences. The Trinity program was used to de novo assemble 98,349 unigens with an N50 of 1342 bp. Using the TransDecoder program, we predicted 43,505 putative proteins. 38,416 unigenes were annotated in the Swiss-Prot protein sequence database using BLASTX. The obtained transcriptomic data will be useful for further studies of the evolution of plant genomes upon transition to a non-photosynthetic lifestyle and the loss of photosynthesis-related functions.

9.
F1000Res ; 5: 722, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27781087

RESUMO

Concerns of traditional prenatal aneuploidy testing methods, such as low accuracy of noninvasive and health risks associated with invasive procedures, were overcome with the introduction of novel noninvasive methods based on genetics (NIPT). These were rapidly adopted into clinical practice in many countries after a series of successful trials of various independent submethods. Here we present results of own NIPT trial carried out in Moscow, Russia. 1012 samples were subjected to the method aimed at measuring chromosome coverage by massive parallel sequencing. Two alternative approaches are ascertained: one based on maternal/fetal differential methylation and another based on allelic difference. While the former failed to provide stable results, the latter was found to be promising and worthy of conducting a large-scale trial. One critical point in any NIPT approach is the determination of fetal cell-free DNA fraction, which dictates the reliability of obtained results for a given sample. We show that two different chromosome Y representation measures-by real-time PCR and by whole-genome massive parallel sequencing-are practically interchangeable (r=0.94). We also propose a novel method based on maternal/fetal allelic difference which is applicable in pregnancies with fetuses of either sex. Even in its pilot form it correlates well with chromosome Y coverage estimates (r=0.74) and can be further improved by increasing the number of polymorphisms.

10.
J Proteome Res ; 15(11): 4030-4038, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27527821

RESUMO

A gene-centric approach was applied for a large-scale study of expression products of a single chromosome. Transcriptome profiling of liver tissue and HepG2 cell line was independently performed using two RNA-Seq platforms (SOLiD and Illumina) and also by Droplet Digital PCR (ddPCR) and quantitative RT-PCR. Proteome profiling was performed using shotgun LC-MS/MS as well as selected reaction monitoring with stable isotope-labeled standards (SRM/SIS) for liver tissue and HepG2 cells. On the basis of SRM/SIS measurements, protein copy numbers were estimated for the Chromosome 18 (Chr 18) encoded proteins in the selected types of biological material. These values were compared with expression levels of corresponding mRNA. As a result, we obtained information about 158 and 142 transcripts for HepG2 cell line and liver tissue, respectively. SRM/SIS measurements and shotgun LC-MS/MS allowed us to detect 91 Chr 18-encoded proteins in total, while an intersection between the HepG2 cell line and liver tissue proteomes was ∼66%. In total, there were 16 proteins specifically observed in HepG2 cell line, while 15 proteins were found solely in the liver tissue. Comparison between proteome and transcriptome revealed a poor correlation (R2 ≈ 0.1) between corresponding mRNA and protein expression levels. The SRM and shotgun data sets (obtained during 2015-2016) are available in PASSEL (PASS00697) and ProteomeExchange/PRIDE (PXD004407). All measurements were also uploaded into the in-house Chr 18 Knowledgebase at http://kb18.ru/protein/matrix/416126 .


Assuntos
Cromossomos Humanos Par 18 , Perfilação da Expressão Gênica , Proteoma/análise , Bases de Dados de Proteínas , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Humanos , Fígado/química , Proteínas/análise , Proteoma/genética , Proteômica/métodos , RNA Mensageiro/análise
11.
Plant Mol Biol ; 91(4-5): 441-58, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27097902

RESUMO

Myco-heterotroph Monotropa hypopitys is a widely spread perennial herb used to study symbiotic interactions and physiological mechanisms underlying the development of non-photosynthetic plant. Here, we performed, for the first time, transcriptome-wide characterization of M. hypopitys miRNA profile using high throughput Illumina sequencing. As a result of small RNA library sequencing and bioinformatic analysis, we identified 55 members belonging to 40 families of known miRNAs and 17 putative novel miRNAs unique for M. hypopitys. Computational screening revealed 206 potential mRNA targets for known miRNAs and 31 potential mRNA targets for novel miRNAs. The predicted target genes were described in Gene Ontology terms and were found to be involved in a broad range of metabolic and regulatory pathways. The identification of novel M. hypopitys-specific miRNAs, some with few target genes and low abundances, suggests their recent evolutionary origin and participation in highly specialized regulatory mechanisms fundamental for non-photosynthetic biology of M. hypopitys. This global analysis of miRNAs and their potential targets in M. hypopitys provides a framework for further investigation of miRNA role in the evolution and establishment of non-photosynthetic myco-heterotrophs.


Assuntos
Ericaceae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Sequência de Bases , Sequência Conservada/genética , Ontologia Genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
BMC Plant Biol ; 16(Suppl 3): 238, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28105941

RESUMO

BACKGROUND: Chloroplasts of most plants are responsible for photosynthesis and contain a conserved set of about 110 genes that encode components of housekeeping gene expression machinery and photosynthesis-related functions. Heterotrophic plants obtaining nutrients from other organisms and their plastid genomes represent model systems in which to study the effects of relaxed selective pressure on photosynthetic function. The most evident is a reduction in the size and gene content of the plastome, which correlates with the loss of genes encoding photosynthetic machinery which become unnecessary. Transition to a non-photosynthetic lifestyle is expected also to relax the selective pressure on photosynthetic machinery in the nuclear genome, however, the corresponding changes are less known. RESULTS: Here we report the complete sequence of the plastid genome of Monotropa hypopitys, an achlorophyllous obligately mycoheterotrophic plant belonging to the family Ericaceae. The plastome of M. hypopitys is greatly reduced in size (35,336 bp) and lacks the typical quadripartite structure with two single-copy regions and an inverted repeat. Only 45 genes remained presumably intact- those encoding ribosomal proteins, ribosomal and transfer RNA and housekeeping genes infA, matK, accD and clpP. The clpP and accD genes probably remain functional, although their sequences are highly diverged. The sets of genes for ribosomal protein and transfer RNA are incomplete relative to chloroplasts of a photosynthetic plant. Comparison of the plastid genomes of two subspecies-level isolates of M. hypopitys revealed major structural rearrangements associated with repeat-driven recombination and the presence of isolate-specific tRNA genes. Analysis of the M. hypopitys transcriptome by RNA-Seq showed the absence of expression of nuclear-encoded components of photosystem I and II reaction center proteins, components of cytochrome b6f complex, ATP synthase, ribulose bisphosphate carboxylase components, as well as chlorophyll from protoporphyrin IX biosynthesis pathway. CONCLUSIONS: With the complete loss of genes related to photosynthesis, NADH dehydrogenase, plastid-encoded RNA polymerase and ATP synthase, the M. hypopitys plastid genome is among the most functionally reduced ones characteristic of obligate non-photosynthetic parasitic species. Analysis of the M. hypopitys transcriptome revealed coordinated evolution of the nuclear and plastome genomes and the loss of photosynthesis-related functions in both genomes.


Assuntos
Ericaceae/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Evolução Biológica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
15.
Mitochondrial DNA B Resour ; 1(1): 831-832, 2016 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33473644

RESUMO

The complete plastid genome sequence of garlic Allium sativum was determined using Illumina sequencing. The plastid DNA is 153,172 bp in length and includes a large single copy region (LSC) of 82,035 bp and a small single copy region (SSC) of 18,015 bp, which are separated by a pair of 26,561 bp inverted repeat regions (IRs). In total, 134 genes are identified, containing 82 protein-coding genes, 38 tRNA genes, eight rRNA genes and six pseudogenes. Most of genes occur as a single copy, while 19 genes are duplicated in IRs. Among 15 intron-containing genes, clpP and ycf3 contain two introns and the rest have one intron.

16.
Genome Biol ; 16: 77, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25886366

RESUMO

BACKGROUND: The three-dimensional organization of the genome is tightly connected to its biological function. The Hi-C approach was recently introduced as a method that can be used to identify higher-order chromatin interactions genome-wide. The aim of this study was to determine genome-wide chromatin interaction frequencies using the Hi-C approach in mouse sperm cells and embryonic fibroblasts. RESULTS: The obtained data demonstrate that the three-dimensional genome organizations of sperm and fibroblast cells show a high degree of similarity both with each other and with the previously described mouse embryonic stem cells. Both A- and B-compartments and topologically associated domains are present in spermatozoa and fibroblasts. Nevertheless, sperm cells and fibroblasts exhibit statistically significant differences between each other in the contact probabilities of defined loci. Tight packaging of the sperm genome results in an enrichment of long-range contacts compared with the fibroblasts. However, only 30% of the differences in the number of contacts are based on differences in the densities of their genome packages; the main source of the differences is the gain or loss of contacts that are specific for defined genome regions. We find that the dependence of the contact probability on genomic distance for sperm is close to the dependence predicted for the fractal globular folding of chromatin. CONCLUSIONS: Overall, we can conclude that the three-dimensional structure of the genome is passed through generations without being dramatically changed in sperm cells.


Assuntos
Fibroblastos/metabolismo , Genoma , Conformação Molecular , Espermatozoides/metabolismo , Animais , Cromatina/genética , Cromossomos/genética , Fibroblastos/citologia , Estudos de Associação Genética/métodos , Loci Gênicos , Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos , Espermatozoides/citologia
17.
J Proteome Res ; 13(1): 183-90, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24328317

RESUMO

We report the results obtained in 2012-2013 by the Russian Consortium for the Chromosome-centric Human Proteome Project (C-HPP). The main scope of this work was the transcriptome profiling of genes on human chromosome 18 (Chr 18), as well as their encoded proteome, from three types of biomaterials: liver tissue, the hepatocellular carcinoma-derived cell line HepG2, and blood plasma. The transcriptome profiling for liver tissue was independently performed using two RNaseq platforms (SOLiD and Illumina) and also by droplet digital PCR (ddPCR) and quantitative RT-PCR. The proteome profiling of Chr 18 was accomplished by quantitatively measuring protein copy numbers in the three types of biomaterial (the lowest protein concentration measured was 10(-13) M) using selected reaction monitoring (SRM). In total, protein copy numbers were estimated for 228 master proteins, including quantitative data on 164 proteins in plasma, 171 in the HepG2 cell line, and 186 in liver tissue. Most proteins were present in plasma at 10(8) copies/µL, while the median abundance was 10(4) and 10(5) protein copies per cell in HepG2 cells and liver tissue, respectively. In summary, for liver tissue and HepG2 cells a "transcriptoproteome" was produced that reflects the relationship between transcript and protein copy numbers of the genes on Chr 18. The quantitative data acquired by RNaseq, PCR, and SRM were uploaded into the "Update_2013" data set of our knowledgebase (www.kb18.ru) and investigated for linear correlations.


Assuntos
Cromossomos Humanos Par 18 , Fígado/metabolismo , Plasma , Proteoma , Transcriptoma , Células Hep G2 , Humanos , Reação em Cadeia da Polimerase/métodos
18.
Ecol Evol ; 3(8): 2612-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24567827

RESUMO

Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high-throughput single-nucleotide polymorphism (SNP)-genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii-like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation. In the present study, the high-throughput genotyping analysis of several sturgeon populations was performed. SNP markers for species identification were defined. The possible explanation of the baerii-like mitotype presence in some Russian sturgeons in the Caspian Sea was suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...