Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(8): 2481-2482, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38506053

RESUMO

Correction for 'Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides' by Palaniappan Subramanian et al., Analyst, 2014, 139, 4343-4349, https://doi.org/10.1039/C4AN00146J.

2.
Biosens Bioelectron ; 225: 115106, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738732

RESUMO

The hydrogen-based economy will require not only sustainable hydrogen production but also sensitive and cheap hydrogen sensors. Commercially available H2 sensors are limited by either use of noble metals or elevated temperatures. In nature, hydrogenase enzymes present high affinity and selectivity for hydrogen, while being able to operate in mild conditions. This study aims at evaluating the performance of an electrochemical sensor based on carbon nanomaterials with immobilised hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus for H2 detection. The effect of various parameters, including the surface chemistry, dispersion degree and amount of deposited carbon nanotubes, enzyme concentration, temperature and pH on the H2 oxidation are investigated. Although the highest catalytic response is obtained at a temperature around 60 °C, a noticeable current can be obtained at room temperature with a low amount of protein less than 1 µM. An original pulse-strategy to ensure H2 diffusion to the bioelectrode allows to reach H2 sensitivity of 4 µA cm-2 per % H2 and a linear range between 1 and 20%. Sustainable hydrogen was then produced through dark fermentation performed by a synthetic bacterial consortium in an up-flow anaerobic packed-bed bioreactor. Thanks to the outstanding properties of the A. aeolicus hydrogenase, the biosensor was demonstrated to be quite insensitive to CO2 and H2S produced as the main co-products of the bioreactor. Finally, the bioelectrode was used for the in situ measurement of H2 produced in the bioreactor in steady-state.


Assuntos
Técnicas Biossensoriais , Hidrogenase , Nanotubos de Carbono , Fermentação , Hidrogenase/química , Hidrogenase/metabolismo , Hidrogênio/química , Reatores Biológicos , Oxirredução , Bactérias/metabolismo , Eletrodos
3.
Anal Chem ; 94(45): 15604-15612, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36315456

RESUMO

Understanding how environmental factors affect the bioelectrode efficiency and stability is of uttermost importance to develop high-performance bioelectrochemical devices. By coupling fluorescence confocal microscopy in situ to electrochemistry, this work focuses on the influence of the ionic strength on electro-enzymatic catalysis. In this context, the 4 e-/4 H+ reduction of O2 into water by the bilirubin oxidase from Myrothecium verrucaria (MvBOD) is considered as a model. The effects of salt concentration on the enzyme activity and stability were probed by enzymatic assays performed in homogeneous catalysis conditions and monitored by UV-vis absorption spectroscopy. They were also investigated in heterogeneous catalysis conditions by electrochemical measurements with MvBOD immobilized at a graphite microelectrode. We demonstrate that the catalytic activity and stability of the enzyme both in solution and in the immobilized state at the bioelectrode were conserved with an electrolyte concentration of up to 0.5 M, both in a buffered and a non-buffered electrolyte. Relying on this, we used fluorescence confocal laser scanning microscopy coupled in situ to electrochemistry to explore the local pH of the electrolyte at the vicinity of the electrode surface at various ionic strengths and for several overpotentials. 3D proton depletion profiles generated by the interfacial electro-enzymatic reaction were recorded in the presence of a pH-sensitive fluorophore. These concentration profiles were shown to contract with increasing ionic strength, thus highlighting the need for a minimal electrolyte concentration to ensure availability of charged substrates at the electrode surface during electro-enzymatic experiments.


Assuntos
Eletrodos , Eletroquímica , Catálise , Concentração Osmolar , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência
4.
Biochimie ; 182: 228-237, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33535124

RESUMO

Thermus thermophilus laccase belongs to the sub-class of multicopper oxidases that is activated by the extra binding of copper to a methionine-rich domain allowing an electron pathway from the substrate to the conventional first electron acceptor, the T1 Cu. In this work, two key amino acid residues in the 1st and 2nd coordination spheres of T1 Cu are mutated in view of tuning their redox potential and investigating their influence on copper-related activity. Evolution of the kinetic parameters after copper addition highlights that both mutations play a key role influencing the enzymatic activity in distinct unexpected ways. These results clearly indicate that the methionine rich domain is not the only actor in the cuprous oxidase activity of CueO-like enzymes.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Lacase/química , Mutação , Thermus thermophilus/enzimologia , Proteínas de Bactérias/genética , Lacase/genética
5.
Front Chem ; 8: 431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582633

RESUMO

Redox enzymes can be envisioned as biocatalysts in various electrocatalytic-based devices. Among factors that play roles in bioelectrochemistry limitations, the effect of enzyme-enzyme neighboring interaction on electrocatalysis has rarely been investigated, although critical in vivo. We report in this work an in-depth study of gold nanoparticles prepared by laser ablation in the ultimate goal of determining the relationship between activity and enzyme density on electrodes. Nanosecond laser interaction with nanometric gold films deposited on indium tin oxide support was used to generate in situ gold nanoparticles (AuNPs) free from any stabilizers. A comprehensive analysis of AuNP size and coverage, as well as total geometric surface vs. electroactive surface is provided as a function of the thickness of the treated gold layer. Using microscopy and electrochemistry, the long-term stability of AuNP-based electrodes in the atmosphere and in the electrolyte is demonstrated. AuNPs formed by laser treatment are then modified by thiol chemistry and their electrochemical behavior is tested with a redox probe. Finally, enzyme adsorption and bioelectrocatalysis are evaluated in the case of two enzymes, i.e., the Myrothecium verrucaria bilirubin oxidase and the Thermus thermophilus laccase. Behaving differently on charged surfaces, they allow demonstrating the validity of laser treated AuNPs for bioelectrocatalysis.

6.
J Am Chem Soc ; 142(3): 1394-1405, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31865707

RESUMO

Multicopper oxidases (MCOs) catalyze the oxidation of a variety of substrates while reducing oxygen into water through four copper atoms. As an additional feature, some MCOs display an enhanced activity in solution in the presence of Cu2+. This is the case of the hyperthermophilic laccase HB27 from Thermus thermophilus, the physiologic role of which is unknown. As a particular feature, this enzyme presents a methionine rich domain proposed to be involved in copper interaction. In this work, laccase from T. thermophilus was produced in E. coli, and the effect of Cu2+ on its electroactivity at carbon nanotube modified electrodes was investigated. Direct O2 electroreduction is strongly dictated by carbon nanotube surface chemistry in accordance with the enzyme dipole moment. In the presence of Cu2+, an additional low potential cathodic wave occurs, which was never described earlier. Analysis of this wave as a function of Cu2+ availability allows us to attribute this wave to a cuprous oxidase activity displayed by the laccase and induced by copper binding close to the Cu T1 center. A mutant lacking the methionine-rich hairpin domain characteristic of this laccase conserves its copper activity suggesting a different site of copper binding. This study provides new insight into the copper effect in methionine rich MCOs and highlights the utility of the electrochemical method to investigate cuprous oxidase activity and to understand the physiological role of these MCOs.


Assuntos
Cobre/metabolismo , Eletrodos , Lacase/metabolismo , Oxigênio/metabolismo , Thermus thermophilus/metabolismo , Oxirredução
7.
J Am Chem Soc ; 141(28): 11093-11102, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31274287

RESUMO

Cytochrome c oxidases (CcOs) are the terminal enzymes in energy-converting chains of microorganisms, where they reduce oxygen into water. Their affinity for O2 makes them attractive biocatalysts for technological devices in which O2 concentration is limited, but the high overpotentials they display on electrodes severely limit their applicative use. Here, the CcO of the acidophilic bacterium Acidithiobacillus ferrooxidans is studied on various carbon materials by direct protein electrochemistry and mediated one with redox mediators either diffusing or co-immobilized at the electrode surface. The entrapment of the CcO in a network of hydrophobic carbon nanofibers permits a direct electrochemical communication between the enzyme and the electrode. We demonstrate that the CcO displays a µM affinity for O2 and reduces O2 at exceptionally high electrode potentials in the range of +700 to +540 mV vs NHE over a pH range of 4-6. The kinetics of interactions between the enzyme and its physiological partners are fully quantified. Based on these results, an electron transfer pathway allowing O2 reduction in the acidic metabolic chain is proposed.


Assuntos
Acidithiobacillus/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Acidithiobacillus/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Oxigênio/química
8.
J Vis Exp ; (144)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30855567

RESUMO

Proton-pumping enzymes of electron transfer chains couple redox reactions to proton translocation across the membrane, creating a proton-motive force used for ATP production. The amphiphilic nature of membrane proteins requires particular attention to their handling, and reconstitution into the natural lipid environment is indispensable when studying membrane transport processes like proton translocation. Here, we detail a method that has been used for the investigation of the proton-pumping mechanism of membrane redox enzymes, taking cytochrome bo3 from Escherichia coli as an example. A combination of electrochemistry and fluorescence microscopy is used to control the redox state of the quinone pool and monitor pH changes in the lumen. Due to the spatial resolution of fluorescent microscopy, hundreds of liposomes can be measured simultaneously while the enzyme content can be scaled down to a single enzyme or transporter per liposome. The respective single enzyme analysis can reveal patterns in the enzyme functional dynamics that might be otherwise hidden by the behavior of the whole population. We include a description of a script for automated image analysis.


Assuntos
Membrana Celular/enzimologia , Lipossomos/metabolismo , Microscopia de Fluorescência , Bombas de Próton/metabolismo , Membrana Celular/metabolismo , Grupo dos Citocromos b/metabolismo , Eletroquímica , Transporte de Elétrons , Proteínas de Escherichia coli/metabolismo
9.
ACS Catal ; 7(6): 3916-3923, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-29930880

RESUMO

Bilirubin oxidases (BODs) belong to the multi-copper oxidase (MCO) family and efficiently reduce O2 at neutral pH and in physiological conditions where chloride concentrations are over 100 mM. BODs were consequently considered to be Cl- resistant contrary to laccases. However, there has not been a detailed study on the related effect of chloride and pH on the redox state of immobilized BODs. Here, we investigate by electrochemistry the catalytic mechanism of O2 reduction by the thermostable Bacillus pumilus BOD immobilized on carbon nanofibers in the presence of NaCl. The addition of chloride results in the formation of a redox state of the enzyme, previously observed for different BODs and laccases, which is only active after a reductive step. This behavior has not been previously investigated. We show for the first time that the kinetics of formation of this state is strongly dependent on pH, temperature, Cl- concentration and on the applied redox potential. UV-visible spectroscopy allows us to correlate the inhibition process by chloride with the formation of the alternative resting form of the enzyme. We demonstrate that O2 is not required for its formation and show that the application of an oxidative potential is sufficient. In addition, our results suggest that the reactivation may proceed thought the T3 ß.

10.
ACS Appl Mater Interfaces ; 8(35): 23074-85, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27533778

RESUMO

Due to the lack of a valid approach in the design of electrochemical interfaces modified with enzymes for efficient catalysis, many oxidoreductases are still not addressed by electrochemistry. We report in this work an in-depth study of the interactions between two different bilirubin oxidases, (from the fungus Myrothecium verrucaria and from the bacterium Bacillus pumilus), catalysts of oxygen reduction, and carbon nanotubes bearing various surface charges (pristine, carboxylic-, and pyrene-methylamine-functionalized). The surface charges and dipole moment of the enzymes as well as the surface state of the nanomaterials are characterized as a function of pH. An original electrochemical approach allows determination of the best interface for direct or mediated electron transfer processes as a function of enzyme, nanomaterial type, and adsorption conditions. We correlate these experimental results to theoric voltammetric curves. Such an integrative study suggests strategies for designing efficient bioelectrochemical interfaces toward the elaboration of biodevices such as enzymatic fuel cells for sustainable electricity production.

11.
ACS Appl Mater Interfaces ; 8(27): 17591-8, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27299176

RESUMO

Thiol-ene click chemistry can be exploited for the immobilization of cysteine-tagged dehydrogenases in an active form onto carbon electrodes (glassy carbon and carbon felt). The electrode surfaces have been first modified with vinylphenyl groups by electrochemical reduction of the corresponding diazonium salts generated in situ from 4-vinylaniline. The grafting process has been optimized in order to not hinder the electrochemical regeneration of NAD(+)/NADH cofactor and soluble mediators such as ferrocenedimethanol and [Cp*Rh(bpy)Cl](+). Having demonstrated the feasibility of thiol-ene click chemistry for attaching ferrocene moieties onto those carbon surfaces, the same approach was then applied to the immobilization of d-sorbitol dehydrogenases with cysteine tag. These proteins can be effectively immobilized (as pointed out by XPS), and the cysteine tag (either 1 or 2 cysteine moieties at the N terminus of the polypeptide chain) was proven to maintain the enzymatic activity of the dehydrogenase upon grafting. The bioelectrode was applied to electroenzymatic enantioselective reduction of d-fructose to d-sorbitol, as a case study.


Assuntos
Química Click , Cisteína , Eletrodos , Oxirredutases , Compostos de Sulfidrila
12.
Bioelectrochemistry ; 104: 65-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25854996

RESUMO

Membrane-bounded (S)-mandelate dehydrogenase has been immobilized on the surface of glassy carbon and carbon felt electrodes by encapsulation in a silica film obtained by sol-gel chemistry. Such bioelectrochemical system has been used for the first time for electroenzymatic conversion of (S)-mandelic acid to phenylglyoxylic acid. Apparent Km in this sol-gel matrix was 0.7 mM in the presence of ferrocenedimethanol, a value in the same order of magnitude as reported previously for vesicles in solution with other electron acceptors, i.e., Fe(CN)6(3-) or 2,6-dichloroindophenol. The bioelectrode shows very good operational stability for more than 6 days. This stability was definitively improved by comparison to a bioelectrode prepared by simple adsorption of the proteins on the electrode surface (fast activity decrease during the first 15 h of experiment). Optimal electroenzymatic reaction was achieved at pH9 and 40 °C. Apparent Km of the protein activity was 3 times higher in carbon felt electrode than on glassy carbon surface, possibly because of transport limitations in the porous architecture of the carbon felt. A good correlation was found between electrochemical data and chromatographic characterization of the reaction products in the bioelectrochemical reactor.


Assuntos
Oxirredutases do Álcool/química , Enzimas Imobilizadas/química , Membranas Artificiais , Oxirredutases do Álcool/metabolismo , Carbono/química , Eletroquímica , Eletrodos , Enzimas Imobilizadas/metabolismo , Vidro/química , Glioxilatos/química , Ácidos Mandélicos/química , Dióxido de Silício/química
13.
Analyst ; 139(17): 4343-9, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25009833

RESUMO

Coating boron-doped diamond nanowires (BDD NWs) with a conducting polymer, poly[3-(pyrrolyl)carboxylic acid], has been reported. Polymer coating was achieved through electropolymerization of 3-(pyrrolyl)carboxylic acid at the electrode interface by amperometrically biasing the BDD NWs interface until a predefined charge has passed. The poly[3-(pyrrolyl)carboxylic acid] modified BDD NWs (PPA-BDD NWs) were characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Using a deposition charge of 11 mC cm(-2) resulted in a thin polymer film deposition. The availability of the carboxylic groups of the polymer coated BDD NWs electrode was demonstrated through copper ion (Cu(2+)) chelation. The resulting complex was successfully used for the site-specific immobilization of histidine-tagged peptides. The binding process was followed by electrochemical impedance spectroscopy (EIS). The Cu(2+)-chelated PPA-BDD NWs interface showed peptide loading capability comparable to those of commercially available interfaces and can be easily regenerated several times using ethylenediaminetetraacetic acid (EDTA).


Assuntos
Ácidos Carboxílicos/química , Diamante/química , Histidina/análise , Nanofios/química , Oligopeptídeos/análise , Peptídeos/química , Pirróis/química , Quelantes/química , Cobre/química , Espectroscopia Dielétrica , Nanofios/ultraestrutura
14.
Langmuir ; 27(11): 7140-7, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21542639

RESUMO

The modification of platinum nanofibers by silica using the electrochemically-assisted deposition is reported here. Pt nanofibers are obtained by electrospinning and deposited on a glass substrate. The electrochemically-assisted deposition of the sol-gel material then gives the unique possibility to finely tune the silica film thickness around these nanofibers. It also allows the successful encapsulation of a biomolecule (glucose oxidase was chosen here as a model) while retaining its biological activity, as pointed out via the electrochemical monitoring of H(2)O(2) produced upon addition of glucose in the medium. This silica-glucose oxidase composite offers the possibility of comparing systematically the influence of the deposition time on the bioelectrode response and to compare it with the particular features of the deposits. It was found that the film first grew uniformly around the nanofibers and then started to deposit between them, covering the whole sample (fibers and glass substrate), and tended to fully embed the nanofibers for prolonged deposition. The thickness of the silica film is critical for the electroactivity of the biocomposite, the best response being obtained for a silica layer thickness in the range of the fiber diameter (∼50 nm).


Assuntos
Nanofibras/química , Nanotecnologia/métodos , Platina/química , Aspergillus niger/enzimologia , Eletroquímica , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...