Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 365: 491-506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030083

RESUMO

Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.


Assuntos
Nanopartículas , Polietilenoglicóis , Camundongos , Animais , Polietilenoglicóis/química , Distribuição Tecidual , Polímeros/química , Poliésteres/química , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
2.
Adv Drug Deliv Rev ; 200: 114962, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321376

RESUMO

Nanotechnology research over the past several decades has been aimed primarily at improving the physicochemical properties of small molecules to produce druggable candidates as well as for tumor targeting of cytotoxic molecules. The recent focus on genomic medicine and the success of lipid nanoparticles for mRNA vaccines have provided additional impetus for the development of nanoparticle drug carriers for nucleic acid delivery, including siRNA, mRNA, DNA, and oligonucleotides, to create therapeutics that can modulate protein deregulation. Bioassays and characterizations, including trafficking assays, stability, and endosomal escape, are key to understanding the properties of these novel nanomedicine formats. We review historical nanomedicine platforms, characterization methodologies, challenges to their clinical translation, and key quality attributes for commercial translation with a view to their developability into a genomic medicine. New nanoparticle systems for immune targeting, as well as in vivo gene editing and in situ CAR therapy, are also highlighted as emerging areas.


Assuntos
Nanomedicina , Nanopartículas , Humanos , Nanomedicina/métodos , Sistemas de Liberação de Medicamentos/métodos , Preparações de Ação Retardada , Nanotecnologia/métodos , Nanopartículas/química , RNA Mensageiro
3.
Mol Pharm ; 19(1): 172-187, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890209

RESUMO

A physiologically based pharmacokinetic model was developed to describe the tissue distribution kinetics of a dendritic nanoparticle and its conjugated active pharmaceutical ingredient (API) in plasma, liver, spleen, and tumors. Tumor growth data from MV-4-11 tumor-bearing mice were incorporated to investigate the exposure/efficacy relationship. The nanoparticle demonstrated improved antitumor activity compared to the conventional API formulation, owing to the extended released API concentrations at the site of action. Model simulations further enabled the identification of critical parameters that influence API exposure in tumors and downstream efficacy outcomes upon nanoparticle administration. The model was utilized to explore a range of dosing schedules and their effect on tumor growth kinetics, demonstrating the improved antitumor activity of nanoparticles with less frequent dosing compared to the same dose of naked APIs in conventional formulations.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/farmacocinética , Nanopartículas/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Distribuição Tecidual , Resultado do Tratamento
4.
Calcolo ; 58(4): 45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803177

RESUMO

We focus on a time-dependent one-dimensional space-fractional diffusion equation with constant diffusion coefficients. An all-at-once rephrasing of the discretized problem, obtained by considering the time as an additional dimension, yields a large block linear system and paves the way for parallelization. In particular, in case of uniform space-time meshes, the coefficient matrix shows a two-level Toeplitz structure, and such structure can be leveraged to build ad-hoc iterative solvers that aim at ensuring an overall computational cost independent of time. In this direction, we study the behavior of certain multigrid strategies with both semi- and full-coarsening that properly take into account the sources of anisotropy of the problem caused by the grid choice and the diffusion coefficients. The performances of the aforementioned multigrid methods reveal sensitive to the choice of the time discretization scheme. Many tests show that Crank-Nicolson prevents the multigrid to yield good convergence results, while second-order backward-difference scheme is shown to be unconditionally stable and that it allows good convergence under certain conditions on the grid and the diffusion coefficients. The effectiveness of our proposal is numerically confirmed in the case of variable coefficients too and a two-dimensional example is given.

5.
Small ; : e2004029, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33210448

RESUMO

Carbon-based nanomaterials (CNMs) are being explored for neurological applications. However, systematic in vivo studies investigating the effects of CNM nanocarriers in the brain and how brain cells respond to such nanomaterials are scarce. To address this, functionalized multiwalled carbon nanotubes and graphene oxide (GO) sheets are injected in mice brain and compared with charged liposomes. The induction of acute neuroinflammatory and neurotoxic effects locally and in brain structures distant from the injection site are assessed up to 1 week postadministration. While significant neuronal cell loss and sustained microglial cell activation are observed after injection of cationic liposomes, none of the tested CNMs induces either neurodegeneration or microglial activation. Among the candidate nanocarriers tested, GO sheets appear to elicit the least deleterious neuroinflammatory profile. At molecular level, GO induces moderate activation of proinflammatory markers compared to vehicle control. At histological level, brain response to GO is lower than after vehicle control injection, suggesting some capacity for GO to reduce the impact of stereotactic injection on brain. While these findings are encouraging and valuable in the selection and design of nanomaterial-based brain delivery systems, they warrant further investigations to better understand the mechanisms underlying GO immunomodulatory properties in brain.

6.
Nanomedicine (Lond) ; 14(24): 3127-3142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31855120

RESUMO

Aim: To develop a nonviral tool for the delivery of siRNA to brain tumor cells using peptide nanofibers (PNFs). Materials & methods: Uptake of PNFs was evaluated by confocal microscopy and flow cytometry. Gene silencing was determined by RT-qPCR and cell invasion assay. Results: PNFs enter phagocytic (BV-2) and nonphagocytic (U-87 MG) cells via endocytosis and passive translocation. siPLK1 delivered using PNFs reduced the expression of polo-like kinase 1 mRNA and induced cell death in a panel of immortalized and glioblastoma-derived stem cells. Moreover, targeting MMP2 using PNF:siMMP2 reduced the invasion capacity of U-87 MG cells. We show that stereotactic intra-tumoral administration of PNF:siPLK1 significantly extends the survival of tumor bearing mice comparing with the untreated tumor bearing animals. Conclusion: Our results suggest that this nanomedicine-based RNA interference approach deserves further investigation as a potential brain tumor therapeutic tool.


Assuntos
Neoplasias Encefálicas/terapia , Proteínas de Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Nanofibras/química , Peptídeos/química , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citometria de Fluxo , Terapia Genética/métodos , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/fisiologia , Camundongos , Camundongos Nus , Microscopia Confocal , Nanomedicina/métodos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
7.
Nanoscale ; 11(29): 13863-13877, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298676

RESUMO

The development of efficient and safe nucleic acid delivery vectors remains an unmet need holding back translation of gene therapy approaches to the bedside. Graphene oxide (GO) could help bypass such bottlenecks, thanks to its large surface area, versatile chemistry and biocompatibility, which could overall enhance transfection efficiency while abolishing some of the limitations linked to the use of viral vectors. Here, we aimed to assess the capacity of bare GO, without any further surface modification, to complex a short double-stranded nucleic acid of biological relevance (siRNA) and mediate its intracellular delivery. GO formed stable complexes with siRNA at 10 : 1, 20 : 1 and 50 : 1 GO : siRNA mass ratios. Complexation was further corroborated by atomistic molecular dynamics simulations. GO : siRNA complexes were promptly internalized in a primary mouse cell culture, as early as 4 h after exposure. At this time point, intracellular siRNA levels were comparable to those provided by a lipid-based transfection reagent that achieved significant gene silencing. The time-lapse tracking of internalized GO and siRNA evidenced a sharp decrease of intracellular siRNA from 4 to 12 h, while GO was sequestered in large vesicles, which may explain the lack of biological effects (i.e. gene silencing) achieved by GO : siRNA complexes. This study underlines the potential of non-surface modified GO flakes to act as 2D siRNA delivery platforms, without the need for cationic functionalization, but warrants further vector optimization to allow the effective release of the nucleic acid and achieve efficient gene silencing.


Assuntos
Grafite/química , RNA Interferente Pequeno/química , Transfecção/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Grafite/toxicidade , Camundongos , Microscopia Confocal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Imagem com Lapso de Tempo
8.
Adv Mater ; 31(4): e1803335, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30488990

RESUMO

The self-assembled layered adsorption of proteins onto nanoparticle (NP) surfaces, once in contact with biological fluids, is termed the "protein corona" and it is gradually seen as a determinant factor for the overall biological behavior of NPs. Here, the previously unreported in vivo protein corona formed in human systemic circulation is described. The human-derived protein corona formed onto PEGylated doxorubicin-encapsulated liposomes (Caelyx) is thoroughly characterized following the recovery of liposomes from the blood circulation of ovarian carcinoma patients. In agreement with previous investigations in mice, the in vivo corona is found to be molecularly richer in comparison to its counterpart ex vivo corona. The intravenously infused liposomes are able to scavenge the blood pool and surface-capture low-molecular-weight, low-abundance plasma proteins that cannot be detected by conventional plasma proteomic analysis. This study describes the previously elusive or postulated formation of protein corona around nanoparticles in vivo in humans and illustrates that it can potentially be used as a novel tool to analyze the blood circulation proteome.


Assuntos
Lipossomos/química , Polietilenoglicóis/química , Coroa de Proteína/química , Adsorção , Doxorrubicina/química , Humanos , Nanopartículas/química
9.
Adv Healthc Mater ; 6(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28777501

RESUMO

Direct labeling of human mesenchymal stem cells (hMSC) prior to transplantation provides a means to track cells after administration and it is a powerful tool for the assessment of new cell-based therapies. Biocompatible nanoprobes consisting of liposome-indocyanine green hybrid vesicles (liposome-ICG) are used to safely label hMSC. Labeled hMSC recapitulating a 3D cellular environment is transplanted as spheroids subcutaneously and intracranially in athymic nude mice. Cells emit a strong NIR signal used for tracking post-transplantation with the IVIS imaging system up to 2 weeks (subcutaneous) and 1 week (intracranial). The transplanted stem cells are imaged in situ after engraftment deep in the brain up to 1 week in living animals using optical imaging techniques and without the need to genetically modify the cells. This method is proposed for efficient, nontoxic direct cell labeling for the preclinical assessment of cell-based therapies and the design of clinical trials, and potentially for localization of the cell engraftment after transplantation into patients.


Assuntos
Rastreamento de Células/métodos , Verde de Indocianina/química , Lipossomos/química , Transplante de Células-Tronco Mesenquimais , Nanoestruturas/química , Células A549 , Adulto , Animais , Células da Medula Óssea/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Células HT29 , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Nanoestruturas/toxicidade , Imagem Óptica , Transplante Heterólogo , Adulto Jovem
10.
ACS Nano ; 9(8): 8142-56, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26135229

RESUMO

The adsorption of proteins and their layering onto nanoparticle surfaces has been called the "protein corona". This dynamic process of protein adsorption has been extensively studied following in vitro incubation of many different nanoparticles with plasma proteins. However, the formation of protein corona under dynamic, in vivo conditions remains largely unexplored. Extrapolation of in vitro formed protein coronas to predict the fate and possible toxicological burden from nanoparticles in vivo is of great interest. However, complete lack of such direct comparisons for clinically used nanoparticles makes the study of in vitro and in vivo formed protein coronas of great importance. Our aim was to study the in vivo protein corona formed onto intravenously injected, clinically used liposomes, based on the composition of the PEGylated liposomal formulation that constitutes the anticancer agent Doxil. The formation of in vivo protein corona was determined after the recovery of the liposomes from the blood circulation of CD-1 mice 10 min postinjection. In comparison, in vitro protein corona was formed by the incubation of liposomes in CD-1 mouse plasma. In vivo and in vitro formed protein coronas were compared in terms of morphology, composition and cellular internalization. The protein coronas on bare (non-PEGylated) and monoclonal antibody (IgG) targeted liposomes of the same lipid composition were also comparatively investigated. A network of linear fibrillary structures constituted the in vitro formed protein corona, whereas the in vivo corona had a different morphology but did not appear to coat the liposome surface entirely. Even though the total amount of protein attached on circulating liposomes correlated with that observed from in vitro incubations, the variety of molecular species in the in vivo corona were considerably wider. Both in vitro and in vivo formed protein coronas were found to significantly reduce receptor binding and cellular internalization of antibody-conjugated liposomes; however, the in vivo corona formation did not lead to complete ablation of their targeting capability.


Assuntos
Proteínas Sanguíneas/química , Imunoglobulina G/química , Bicamadas Lipídicas/química , Lipossomos/química , Nanopartículas/química , Adsorção , Animais , Antibióticos Antineoplásicos/química , Colesterol/química , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Humanos , Imunoconjugados/química , Injeções Intravenosas , Lipossomos/ultraestrutura , Células MCF-7 , Camundongos , Nanopartículas/ultraestrutura , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química
11.
Adv Mater ; 27(19): 2981-8, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25850420

RESUMO

In vivo imaging and actuation of a swarm of magnetic helical microswimmers by external magnetic fields (less than 10 mT) in deep tissue is demonstrated for the first time. This constitutes a major milestone in the field, yielding a generation of micrometer-scale transporters with numerous applications in biomedicine including synthetic biology, assisted fertilization, and drug/gene delivery.


Assuntos
Fenômenos Fisiológicos Bacterianos , Flagelos/fisiologia , Modelos Biológicos , Natação/fisiologia , Animais , Bactérias , Corantes Fluorescentes/química , Glucose , HEPES , Campos Magnéticos , Camundongos , Camundongos Endogâmicos BALB C , Níquel/química , Oxigênio/química , Cavidade Peritoneal , Polimerização , Rotação , Soro , Titânio/química
12.
ACS Nano ; 9(2): 1137-49, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25574683

RESUMO

Peptide nanofibers (PNFs) are one-dimensional assemblies of amphiphilic peptides in a cylindrical geometry. We postulated that peptide nanofibers (PNFs) can provide the tools for genetic intervention and be used for delivery of siRNA, as they can be engineered with positively charged amino acids that can electrostatically bind siRNA. The aim of this work was to investigate the use of PNFs as vectors for siRNA delivery providing effective gene knockdown. We designed a surfactant-like peptide (palmitoyl-GGGAAAKRK) able to self-assemble into PNFs and demonstrated that complexes of PNF:siRNA are uptaken intracellularly and increase the residence time of siRNA in the brain after intracranial administration. The biological activity of the complexes was investigated in vitro by analyzing the down-regulation of the expression of a targeted protein (BCL2), as well as induction of apoptosis, as well as in vivo by analyzing the relative gene expression upon stereotactic administration into a deep rat brain structure (the subthalamic nucleus). Gene expression levels of BCL2 mRNA showed that PNF:siBCL2 constructs were able to silence the target BCL2 in specific loci of the brain. Silencing of the BCL2 gene resulted in ablation of neuronal cell populations, indicating that genetic interventions by PNF:siRNA complexes may lead to novel treatment strategies of CNS pathologies.


Assuntos
Encéfalo/metabolismo , Inativação Gênica , Nanofibras/química , Peptídeos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Técnicas Estereotáxicas , Sequência de Aminoácidos , Animais , Apoptose/genética , Transporte Biológico , Encéfalo/cirurgia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Masculino , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Ratos Sprague-Dawley
13.
Nanomedicine (Lond) ; 9(9): 1291-4, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25204820

RESUMO

Nanomedicine 2014 Edinburgh, UK, 26-27 March 2014 The British Society for Nanomedicine (BSNM), in collaboration with SELECTBIO, organized Nanomedicine 2014. BSNM is a registered charity created to allow open access for industry, academia, clinicians and the public to news and details of ongoing nanomedicine research. The Nanomedicine 2014 program provided insight across a number of emerging nanotechnologies spanning treatment to diagnostics. A key objective of the meeting was provision of opportunities to build collaborations and rationalize nanoenabled healthcare solutions.


Assuntos
Nanomedicina , Portadores de Fármacos/química , Humanos , Nanopartículas/química , Nanotecnologia
14.
ACS Nano ; 7(2): 1016-26, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23289352

RESUMO

The delivery of therapeutic peptides and proteins to the central nervous system is the biggest challenge when developing effective neuropharmaceuticals. The central issue is that the blood-brain barrier is impermeable to most molecules. Here we demonstrate the concept of employing an amphiphilic derivative of a peptide to deliver the peptide into the brain. The key to success is that the amphiphilic peptide should by design self-assemble into nanofibers wherein the active peptide epitope is tightly wrapped around the nanofiber core. The nanofiber form appears to protect the amphiphilic peptide from degradation while in the plasma, and the amphiphilic nature of the peptide promotes its transport across the blood-brain barrier. Therapeutic brain levels of the amphiphilic peptide are achieved with this strategy, compared with the absence of detectable peptide in the brain and the consequent lack of a therapeutic response when the underivatized peptide is administered.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos/química , Leucina Encefalina-2-Alanina/análogos & derivados , Nanofibras/química , Peptídeos/química , Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/metabolismo , Leucina Encefalina-2-Alanina/metabolismo , Leucina Encefalina-2-Alanina/uso terapêutico , Modelos Moleculares , Nanomedicina , Peptídeos/metabolismo , Conformação Proteica
15.
Faraday Discuss ; 166: 181-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24611276

RESUMO

Peptide nanofibres (PNFs) have gained increasing interest as engineered biomaterials for drug delivery and tissue repair because of the versatility in design they offer through the self-assembly of amphiphilic peptide molecules. Their self-assembly is governed by hydrophobic interactions and hydrogen bonds between peptide sequences able to form beta-sheets. In this report, we describe the self-assembly of PNFs by using palmitoyl-peptide molecules containing two different cationic amino acid sequences and offer a description of the nanofiber physicochemical characteristics. The structural degradation of these PNFs in physiologically-relevant media was evaluated experimentally and two mechanisms are proposed. We also piloted the tracking of PNFs intracellularly in vitro, upon interaction with primary neuronal cultures, and intracranially in vivo, after stereotactic administration deep within the brain using two types of fluorescent labelled PNFs. Overall, the self-assembled PNFs were seen to internalise within neurons and be removed or degrade in the brain. Further work is needed to determine the utility of such PNFs as molecular transporters within neuronal tissue.


Assuntos
Nanofibras , Peptídeos/química , Animais , Células Cultivadas , Camundongos , Camundongos Nus , Ratos
16.
J Am Chem Soc ; 134(32): 13256-8, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22852749

RESUMO

The design of liposome-nanoparticle hybrids offers a rich toolbox for the fabrication of multifunctional modalities. A self-assembled liposome-gold nanorod hybrid vesicular system that consists of lipid-bilayer-associated gold nanorods designed to allow deep tissue detection, therapy, and monitoring in living animals using multispectral optoacoustic tomography has been fabricated and characterized in vitro and in vivo.


Assuntos
Ouro/química , Lipossomos/química , Nanopartículas Metálicas/química , Animais , Humanos , Lipossomos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Imagem Óptica
17.
J Control Release ; 161(2): 523-36, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22613882

RESUMO

The formulation of drug compounds into medicines will increasingly rely on the use of specially tailored molecules, which fundamentally alter the drug's pharmacokinetics to enable its therapeutic activity. This is particularly true of the more challenging hydrophobic drugs or therapeutic biological molecules. The demand for such enabled medicines will translate into a demand for advanced highly functionalised drug delivery materials. Polymers have been used to formulate medicines for many decades and this is unlikely to change soon. Amphiphilic polymers based on amino acids are the subject of this review. These molecules, which present as either poly(L-amino acid) block copolymers or poly(L-amino acid) backbones with hydrophobic substituents, self assemble into micelles, vesicles, nanofibres and solid nanoparticles and such self assemblies, have drug delivery capabilities. The nature of the self-assembly depends on the chemistry of the constituent molecules, with the more hydrophilic molecules forming nanosized micellar aggregates including peptide nanofibres, molecules of intermediate hydrophobicity forming polymeric vesicles and the more hydrophobic variants forming amorphous polymeric nanoparticles of 100-1000 nm in diameter. The self-assemblies may be loaded with drugs or may present as micelle forming polymer-drug conjugates and the supramolecular aggregates have been employed as drug solubilisers, tumour targeting agents, gene delivery vectors and facilitators of intracellular drug uptake, with a more promising polymer-drug conjugate progressing to clinical testing.


Assuntos
Aminoácidos/química , Sistemas de Liberação de Medicamentos , Peptídeos/química , Polímeros/química , Aminoácidos/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Humanos , Micelas , Peptídeos/administração & dosagem , Polímeros/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...