Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 92(1-2): 161-75, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27338258

RESUMO

A family of CBF transcription factors plays a major role in reconfiguring the plant transcriptome in response to low-freezing temperature in temperate cereals. In barley, more than 13 HvCBF genes map coincident with the major QTL FR-H2 suggesting them as candidates to explain the function of the locus. Variation in copy number (CNV) of specific HvCBFs was assayed in a panel of 41 barley genotypes using RT-qPCR. Taking advantage of an accurate phenotyping that combined Fv/Fm and field survival, resistance-associated variants within FR-H2 were identified. Genotypes with an increased copy number of HvCBF4 and HvCBF2 (at least ten and eight copies, respectively) showed greater frost resistance. A CAPS marker able to distinguish the CBF2A, CBF2B and CBF2A/B forms was developed and showed that all the higher-ranking genotypes in term of resistance harbour only CBF2A, while other resistant winter genotypes harbour also CBF2B, although at a lower CNV. In addition to the major involvement of the HvCBF4-HvCBF2 genomic segment in the proximal cluster of CBF elements, a negative role of HvCBF3 in the distal cluster was identified. Multiple linear regression models taking into account allelic variation at FR-H1/VRN-H1 explained 0.434 and 0.550 (both at p < 0.001) of the phenotypic variation for Fv/Fm and field survival respectively, while no interaction effect between CNV at the HvCBFs and FR-H1/VRN-H1 was found. Altogether our data suggest a major involvement of the CBF genes located in the proximal cluster, with no apparent involvement of the central cluster contrary to what was reported for wheat.


Assuntos
Variações do Número de Cópias de DNA/genética , Hordeum/genética , Hordeum/fisiologia , Proteínas de Plantas/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Plant Genome ; 8(3): eplantgenome2015.03.0011, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33228274

RESUMO

The huge size, redundancy, and highly repetitive nature of the bread wheat [Triticum aestivum (L.)] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC). A total of 95,812 bacterial artificial chromosome (BAC) clones of short-arm chromosome 5A (5AS) and long-arm chromosome 5A (5AL) arm-specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC) and Linear Topological Contig (LTC) tools. Combined anchoring approaches based on polymerase chain reaction (PCR) marker screening, microarray, and sequence homology searches applied to several genomic tools (i.e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs), genome zipper, and chromosome survey sequences) allowed the development of a high-quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively) of contigs ordered along the chromosome. In the genome of grasses, Brachypodium [Brachypodium distachyon (L.) Beauv.], rice (Oryza sativa L.), and sorghum [Sorghum bicolor (L.) Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits and a reference for the 5A sequencing projects.

3.
Genome ; 55(2): 152-63, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22321152

RESUMO

The potential of the model grass Brachypodium distachyon L. (Brachypodium) for studying grass-pathogen interactions is still underexploited. We aimed to identify genomic regions in Brachypodium associated with quantitative resistance to the false brome rust fungus Puccinia brachypodii . The inbred lines Bd3-1 and Bd1-1, differing in their level of resistance to P. brachypodii, were crossed to develop an F(2) population. This was evaluated for reaction to a virulent isolate of P. brachypodii at both the seedling and advanced growth stages. To validate the results obtained on the F(2), resistance was quantified in F(2)-derived F(3) families in two experiments. Disease evaluations showed quantitative and transgressive segregation for resistance. A new AFLP-based Brachypodium linkage map consisting of 203 loci and spanning 812 cM was developed and anchored to the genome sequence with SSR and SNP markers. Three false brome rust resistance QTLs were identified on chromosomes 2, 3, and 4, and they were detected across experiments. This study is the first quantitative trait analysis in Brachypodium. Resistance to P. brachypodii was governed by a few QTLs: two acting at the seedling stage and one acting at both seedling and advanced growth stages. The results obtained offer perspectives to elucidate the molecular basis of quantitative resistance to rust fungi.


Assuntos
Basidiomycota , Brachypodium/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Brachypodium/microbiologia , Cruzamentos Genéticos , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...