Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534332

RESUMO

Glioblastoma, a deadly brain tumor, shows limited response to standard therapies like temozolomide (TMZ). Recent findings from the REGOMA trial underscore a significant survival improvement offered by Regorafenib (REGO) in recurrent glioblastoma. Our study aimed to propose a 3D ex vivo drug response precision medicine approach to investigate recurrent glioblastoma sensitivity to REGO and elucidate the underlying molecular mechanisms involved in tumor resistance or responsiveness to treatment. Three-dimensional glioblastoma organoids (GB-EXPs) obtained from 18 patients' resected recurrent glioblastoma tumors were treated with TMZ and REGO. Drug responses were evaluated using NAD(P)H FLIM, stratifying tumors as responders (Resp) or non-responders (NRs). Whole-exome sequencing was performed on 16 tissue samples, and whole-transcriptome analysis on 13 GB-EXPs treated and untreated. We found 35% (n = 9) and 77% (n = 20) of tumors responded to TMZ and REGO, respectively, with no instances of TMZ-Resp being REGO-NRs. Exome analysis revealed a unique mutational profile in REGO-Resp tumors compared to NR tumors. Transcriptome analysis identified distinct expression patterns in Resp and NR tumors, impacting Rho GTPase and NOTCH signaling, known to be involved in drug response. In conclusion, recurrent glioblastoma tumors were more responsive to REGO compared to TMZ treatment. Importantly, our approach enables a comprehensive longitudinal exploration of the molecular changes induced by treatment, unveiling promising biomarkers indicative of drug response.


Assuntos
Glioblastoma , Compostos de Fenilureia , Piridinas , Humanos , Antineoplásicos Alquilantes/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Recidiva Local de Neoplasia/patologia , Temozolomida/farmacologia
2.
Cancers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067258

RESUMO

In 2012, whole-transcriptome sequencing analysis led to the discovery of recurrent fusions involving the FGFR3 and TACC3 genes as the main oncological driver in a subset of human glioblastomas. Since then, FGFR3-TACC3 fusions have been identified in several other solid cancers. Further studies dissected the oncogenic mechanisms of the fusion protein and its complex interplay with cancer cell metabolism. FGFR3-TACC3 fusion-driven gliomas emerged as a defined subgroup with specific clinical, histological, and molecular features. Several FGFR inhibitors were tested in FGFR3-TACC3 fusion-positive gliomas and proved some efficacy, although inferior to the results seen in other FGFR3-TACC3 fusion-driven cancers. In this review, we summarize and discuss the state-of-the-art knowledge resulting from a 10-year research effort in the field, its clinical implications for glioma patients, the potential reasons for targeted therapy failures, and the perspective of emerging treatments.

3.
Curr Opin Oncol ; 35(6): 536-542, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820088

RESUMO

PURPOSE OF REVIEW: Gliomas represent approximately 25% of all primary brain and other central nervous system (CNS) tumors and 81% of malignant tumors. Unfortunately, standard treatment approaches for most CNS cancers have shown limited improvement in patient survival rates. RECENT FINDINGS: The current drug development process has been plagued by high failure rates, leading to a shift towards human disease models in biomedical research. Unfortunately, suitable preclinical models for brain tumors have been lacking, hampering our understanding of tumor initiation processes and the discovery of effective treatments. In this review, we will explore the diverse preclinical models employed in neuro-oncology research and their contributions to translational science. SUMMARY: By utilizing a combination of these preclinical models and fostering interdisciplinary collaborations, researchers can deepen their understanding of glioma brain tumors and develop novel therapeutic strategies to combat these devastating diseases. These models offer promising prospects for personalized and efficacious treatments for these challenging malignancies. Although it is unrealistic to fully replicate the complexity of the human body in vitro, the ultimate goal should be to achieve the closest possible resemblance to the clinical context.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Humanos , Pesquisa Translacional Biomédica , Ciência Translacional Biomédica , Glioma/tratamento farmacológico , Glioma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico
4.
Crit Rev Oncol Hematol ; 188: 104065, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392899

RESUMO

Despite advances in the therapy of Central Nervous System (CNS) malignancies, treatment of glioblastoma (GB) poses significant challenges due to GB resistance and high recurrence rates following post-operative radio-chemotherapy. The majority of prognostic and predictive GB biomarkers are currently developed using tumour samples obtained through surgical interventions. However, the selection criteria adopted by different neurosurgeons to determine which cases are suitable for surgery make operated patients not representative of all GB cases. Particularly, geriatric and frail individuals are excluded from surgical consideration in some cancer centers. Such selection generates a survival (or selection) bias that introduces limitations, rendering the patients or data chosen for downstream analyses not representative of the entire community. In this review, we discuss the implication of survivorship bias on current and novel biomarkers for patient selection, stratification, therapy, and outcome analyses.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Idoso , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Dacarbazina , Sobrevivência , Metilação de DNA , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Prognóstico , Biomarcadores Tumorais/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/uso terapêutico
5.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373240

RESUMO

Conventional high-grade osteosarcoma (OS) is the most common primary cancer of bone and it typically affects the extremities of adolescents. OS has a complex karyotype, and molecular mechanisms related to carcinogenesis, progression and resistance to therapy are still largely unknown. For this reason, the current standard of care is associated with considerable adverse effects. In this study, our aim was to identify gene alterations in OS patients using whole exome sequencing (WES) to find new potential prognostic biomarkers and therapeutic targets. We performed WES on formalin-fixed paraffin-embedded (FFPE) biopsy materials collected from 19 patients affected by conventional high-grade OS. The clinical and genetic data were analyzed according to response to therapy, presence of metastasis and disease status. By comparing good and poor responders to neoadjuvant therapy, we detected a clear prevalence of mutations in the ARID1A, CREBBP, BRCA2 and RAD50 genes in poor responders that negatively influence the progression-free survival time. Moreover, higher tumor mutational burden values correlated with worse prognosis. The identification of mutations in ARID1A, CREBBP, BRCA2 and RAD50 may support the use of a more specific therapy for tumors harboring these alterations. In particular, BRCA2 and RAD50 are involved in homologous recombination repair, and could thus be used as specific therapy targets of inhibitors of the enzyme Poly ADP Ribose Polymerase (PARP). Finally, tumor mutational burden is found to be a potential prognostic marker for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Humanos , Prognóstico , Sequenciamento do Exoma , Mutação , Osteossarcoma/genética , Neoplasias Ósseas/genética , Biomarcadores Tumorais/genética
6.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373295

RESUMO

Circulating tumor cells (CTCs) are one of the most important causes of tumor recurrence and distant metastases. Glioblastoma (GBM) has been considered restricted to the brain for many years. Nevertheless, in the past years, several pieces of evidence indicate that hematogenous dissemination is a reality, and this is also in the caseof GBM. Our aim was to optimize CTCs' detection in GBM and define the genetic background of single CTCs compared to the primary GBM tumor and its recurrence to demonstrate that CTCs are indeed derived from the parental tumor. We collected blood samples from a recurrent IDH wt GBM patient. We genotyped the parental recurrent tumor tissue and the respective primary GBM tissue. CTCs were analyzed using the DEPArray system. CTCs Copy Number Alterations (CNAs) and sequencing analyses were performed to compare CTCs' genetic background with the same patient's primary and recurrent GBM tissues. We identified 210 common mutations in the primary and recurrent tumors. Among these, three somatic high-frequency mutations (in PRKCB, TBX1, and COG5 genes) were selected to investigate their presence in CTCs. Almost all sorted CTCs (9/13) had at least one of the mutations tested. The presence of TERT promoter mutations was also investigated and C228T variation was found in parental tumors and CTCs (C228T heterozygous and homozygous, respectively). We were able to isolate and genotype CTCs from a patient with GBM. We found common mutations but also exclusive molecular characteristics.


Assuntos
Glioblastoma , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Glioblastoma/genética , Glioblastoma/patologia , Recidiva Local de Neoplasia/genética , Mutação , Genótipo
7.
Neuro Oncol ; 25(8): 1463-1473, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805257

RESUMO

BACKGROUND: Glioblastoma growth impacts on the structure and physiology of peritumoral neuronal networks, altering the activity of pyramidal neurons which drives further tumor progression. It is therefore of paramount importance to identify glioma-induced changes in pyramidal neurons, since they represent a key therapeutic target. METHODS: We longitudinal monitored visual evoked potentials after the orthotopic implant of murine glioma cells into the mouse occipital cortex. With laser microdissection, we analyzed layer II-III pyramidal neurons molecular profile and with local field potentials recordings we evaluated the propensity to seizures in glioma-bearing animals with respect to control mice. RESULTS: We determine the time course of neuronal dysfunction of glioma-bearing mice and we identify a symptomatic stage, based on the decay of visual response. At that time point, we microdissect layer II-III pyramidal neurons and evaluate the expression of a panel of genes involved in synaptic transmission and neuronal excitability. Compared to the control group, peritumoral neurons show a decrease in the expression of the SNARE complex gene SNAP25 and the alpha1 subunit of the GABA-A receptor. No significant changes are detected in glutamatergic (ie, AMPA or NMDA receptor subunit) markers. Further reduction of GABA-A signaling by delivery of a benzodiazepine inverse agonist, DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) precipitates seizures in 2 mouse models of tumor-bearing mice. CONCLUSIONS: These studies reveal novel molecular changes that occur in the principal cells of the tumor-adjacent zone. These modifications may be therapeutically targeted to ameliorate patients' quality of life.


Assuntos
Potenciais Evocados Visuais , Glioma , Camundongos , Animais , Agonismo Inverso de Drogas , Qualidade de Vida , Convulsões , Neurônios , Glioma/metabolismo
8.
Acta Neuropathol Commun ; 10(1): 189, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36567321

RESUMO

Regeneration of the neuromuscular junction (NMJ) leverages on extensive exchange of factors released from motor axon terminals (MATs), muscle fibers and perisynaptic Schwann cells (PSCs), among which hydrogen peroxide (H2O2) is a major pro-regenerative signal. To identify critical determinants of NMJ remodeling in response to injury, we performed temporal transcriptional profiling of NMJs from 2 month-old mice during MAT degeneration/regeneration, and cross-referenced the differentially expressed genes with those elicited by H2O2 in SCs. We identified an enrichment in extracellular matrix (ECM) transcripts, including Connective Tissue Growth Factor (Ctgf), which is usually expressed during development. We discovered that Ctgf levels are increased in a Yes-associated protein (YAP)-dependent fashion in response to rapid, local H2O2 signaling generated by stressed mitochondria in the injured sciatic nerve, a finding highlighting the importance of signals triggered by mechanical force to motor nerve repair. Through sequestration of Ctgf or inactivation of H2O2, we delayed the recovery of neuromuscular function by impairing SC migration and, in turn, axon-oriented re-growth. These data indicate that H2O2 and its downstream effector Ctgf are pro-regenerative factors that enable axonal growth, and reveal a striking ECM remodeling process during nerve regeneration upon local H2O2 signaling. Our study identifies key transcriptomic changes at the regenerating NMJ, providing a rich source of pro-regenerative factors with potential for alleviating the consequences of peripheral nerve injuries.


Assuntos
Axônios , Fator de Crescimento do Tecido Conjuntivo , Peróxido de Hidrogênio , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Animais , Camundongos , Axônios/fisiologia , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos Transgênicos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Células de Schwann/metabolismo
9.
Front Oncol ; 12: 969812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132155

RESUMO

Background: Glioblastoma (GB) is the most severe form of brain cancer, with a 12-15 month median survival. Surgical resection, temozolomide (TMZ) treatment, and radiotherapy remain the primary therapeutic options for GB, and no new therapies have been introduced in recent years. This therapeutic standstill is primarily due to preclinical approaches that do not fully respect the complexity of GB cell biology and fail to test efficiently anti-cancer treatments. Therefore, better treatment screening approaches are needed. In this study, we have developed a novel functional precision medicine approach to test the response to anticancer treatments in organoids derived from the resected tumors of glioblastoma patients. Methods: GB organoids were grown for a short period of time to prevent any genetic and morphological evolution and divergence from the tumor of origin. We chose metabolic imaging by NAD(P)H fluorescence lifetime imaging microscopy (FLIM) to predict early and non-invasively ex-vivo anti-cancer treatment responses of GB organoids. TMZ was used as the benchmark drug to validate the approach. Whole-transcriptome and whole-exome analyses were performed to characterize tumor cases stratification. Results: Our functional precision medicine approach was completed within one week after surgery and two groups of TMZ Responder and Non-Responder tumors were identified. FLIM-based metabolic tumor stratification was well reflected at the molecular level, confirming the validity of our approach, highlighting also new target genes associated with TMZ treatment and identifying a new 17-gene molecular signature associated with survival. The number of MGMT gene promoter methylated tumors was higher in the responsive group, as expected, however, some non-methylated tumor cases turned out to be nevertheless responsive to TMZ, suggesting that our procedure could be synergistic with the classical MGMT methylation biomarker. Conclusions: For the first time, FLIM-based metabolic imaging was used on live glioblastoma organoids. Unlike other approaches, ex-vivo patient-tailored drug response is performed at an early stage of tumor culturing with no animal involvement and with minimal tampering with the original tumor cytoarchitecture. This functional precision medicine approach can be exploited in a range of clinical and laboratory settings to improve the clinical management of GB patients and implemented on other cancers as well.

10.
Histopathology ; 81(3): 389-401, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35791778

RESUMO

OBJECTIVE: Chondroblastoma-like osteosarcoma (CBLOS) is a rare and poorly understood variant of OS. We examined the clinicopathological, immunohistochemical and molecular features of six CBLOSs to highlight the differences with conventional high-grade OS (CHGOS) and CB, including CB with aggressive features. METHODS: We performed histone 3.3 mutation analysis by gene sequencing and/or immunohistochemistry in all cases, while whole exome sequencing (WES) was performed on two CB-like osteosarcomas and 11 conventional high-grade OS. RESULTS: CBLOSs were predominantly localised at acral sites and involved mainly male subjects with a mean age of 29 years. One patient who had metastases at presentation died of disease, while another patient who developed multiple local recurrences and lung metastases was alive with no evidence of disease (ANED) at 294 months. The remaining patients were ANED after a mean interval of 70.8 months. Histologically, all CBLOS presented aggressive features, including nuclear atypia and infiltrative growth. Immunohistochemistry with H3F3 K36M mutant antibody was negative in all CBLOSs, and none of the five tumours tested by gene sequencing had H3F3B mutations. Conversely, all CBs presented the H3F3B K36M variant and were positive for immunostaining with the H3F3 K36M antibody. Two CBLOSs analysed by WES differed in amount and type of mutation from 11 cases of CHGOS. Moreover, CBLOSs showed lower copy number alteration (CNA) score values than CHGOSs. CONCLUSIONS: CBLOS presents a different genetic background and a less aggressive clinical behaviour in comparison with CHGOS. Search of the H3F3B K36M mutation is useful in the differential diagnosis with CB.


Assuntos
Neoplasias Ósseas , Condroblastoma , Osteossarcoma , Adulto , Anticorpos , Neoplasias Ósseas/patologia , Condroblastoma/diagnóstico , Condroblastoma/genética , Condroblastoma/patologia , Feminino , Histonas/genética , Humanos , Imuno-Histoquímica , Masculino , Osteossarcoma/patologia
11.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682658

RESUMO

Glioblastoma (GBM) is the most common form of malignant brain cancer and is considered the deadliest human cancer. Because of poor outcomes in this disease, there is an urgent need for progress in understanding the molecular mechanisms of GBM therapeutic resistance, as well as novel and innovative therapies for cancer prevention and treatment. The pentose phosphate pathway (PPP) is a metabolic pathway complementary to glycolysis, and several PPP enzymes have already been demonstrated as potential targets in cancer therapy. In this work, we aimed to evaluate the role of sedoheptulose kinase (SHPK), a key regulator of carbon flux that catalyzes the phosphorylation of sedoheptulose in the nonoxidative arm of the PPP. SHPK expression was investigated in patients with GBM using microarray data. SHPK was also overexpressed in GBM cells, and functional studies were conducted. SHPK expression in GBM shows a significant correlation with histology, prognosis, and survival. In particular, its increased expression is associated with a worse prognosis. Furthermore, its overexpression in GBM cells confirms an increase in cell proliferation. This work highlights for the first time the importance of SHPK in GBM for tumor progression and proposes this enzyme and the nonoxidative PPP as possible therapeutic targets.


Assuntos
Glioblastoma , Via de Pentose Fosfato , Proliferação de Células , Glioblastoma/genética , Glioblastoma/metabolismo , Heptoses , Humanos
12.
Infect Agent Cancer ; 17(1): 35, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739602

RESUMO

The mouse mammary tumour virus (MMTV) is implicated in the aetiology of murine mammary carcinomas and a variant of it, the type B leukemogenic virus, can cause murine thymic lymphomas. Interestingly, a MMTV-like virus is suspected to be involved in human breast cancer and feline mammary carcinomas. However, to date, no cases of MMTV-like sequence amplifications have been described in lymphoid neoplasms in veterinary literature. The aim of this study was to investigate the presence of env nucleotide sequences and protein 14 (p14) of a MMTV-like virus in fifty-three feline lymphoma samples. Our results show that MMTV-like sequences were detected in 5/53 tumours (9.4%): three gastrointestinal lymphomas (one B-type diffuse large, one B-type small non-cleaved, and one T-type diffuse mixed lymphoma); and two nasal lymphomas (one B-type diffuse small cleaved lymphoma and one B-type diffuse mixed lymphoma). P14 expression was detected in the cytoplasm, and rarely in nuclei, exclusively of neoplastic cells from PCR-positive tumours. The correlation between the presence of the MMTV-env like sequences (MMTVels) and p14 antigen was statistically significant in nasal lymphomas. All cats with MMTVels-positive lymphoma had a history of contact with the outdoor environment and/or catteries, and two deceased subjects shared their environment with cats that also died of lymphoma. In conclusion, this study succeeds in demonstrating the presence of MMTVels and p14 in feline lymphomas. The characterization of the immunophenotype of MMTVels-positive lymphomas could contribute to the understanding of a possible role of a MMTV-like virus in feline tumour aetiology. The significant association between the presence of the viral sequences in lymphoid tumours and their nasal localization, together with the data collected through supplementary anamnesis, should be further analysed in order to understand the epidemiology of the virus.

13.
Viruses ; 14(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35632719

RESUMO

Since its discovery as a milk factor, mouse mammary tumor virus (MMTV) has been shown to cause mammary carcinoma and lymphoma in mice. MMTV infection depends upon a viral superantigen (sag)-induced immune response and exploits the immune system to establish infection in mammary epithelial cells when they actively divide. Simultaneously, it avoids immune responses, causing tumors through insertional mutagenesis and clonal expansion. Early studies identified antigens and sequences belonging to a virus homologous to MMTV in human samples. Several pieces of evidence fulfill a criterion for a possible causal role for the MMTV-like virus in human breast cancer (BC), though the controversy about whether this virus was linked to BC has raged for over 40 years in the literature. In this review, the most important issues related to MMTV, from its discovery to the present days, are retraced to fully explore such a controversial issue. Furthermore, the hypothesis of an MMTV-like virus raised the question of a potential zoonotic mouse-man transmission. Several studies investigate the role of an MMTV-like virus in companion animals, suggesting their possible role as mediators. Finally, the possibility of an MMTV-like virus as a cause of human BC opens a new era for prevention and therapy.


Assuntos
Neoplasias da Mama , Infecções por Retroviridae , Animais , Feminino , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Camundongos
14.
Front Cell Neurosci ; 16: 858347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573835

RESUMO

As microtubule-organizing centers (MTOCs), centrosomes play a pivotal role in cell division, neurodevelopment and neuronal maturation. Among centrosomal proteins, centrin-2 (CETN2) also contributes to DNA repair mechanisms which are fundamental to prevent genomic instability during neural stem cell pool expansion. Nevertheless, the expression profile of CETN2 in human neural stem cells and their progeny is currently unknown. To address this question, we interrogated a platform of human neuroepithelial stem (NES) cells derived from post mortem developing brain or established from pluripotent cells and demonstrated that while CETN2 retains its centrosomal location in proliferating NES cells, its expression pattern changes upon differentiation. In particular, we found that CETN2 is selectively expressed in mature astrocytes with a broad cytoplasmic distribution. We then extended our findings on human autoptic nervous tissue samples. We investigated CETN2 distribution in diverse anatomical areas along the rostro-caudal neuraxis and pointed out a peculiar topography of CETN2-labeled astrocytes in humans which was not appreciable in murine tissues, where CETN2 was mostly confined to ependymal cells. As a prototypical condition with glial overproliferation, we also explored CETN2 expression in glioblastoma multiforme (GBM), reporting a focal concentration of CETN2 in neoplastic astrocytes. This study expands CETN2 localization beyond centrosomes and reveals a unique expression pattern that makes it eligible as a novel astrocytic molecular marker, thus opening new roads to glial biology and human neural conditions.

15.
Cells ; 11(7)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406690

RESUMO

BACKGROUND: Glioblastoma (GB) is a devastating primary brain malignancy. The recurrence of GB is inevitable despite the standard treatment of surgery, chemotherapy, and radiation, and the median survival is limited to around 15 months. The barriers to treatment include the complex interactions among the different cellular components inhabiting the tumor microenvironment. The complex heterogeneous nature of GB cells is helped by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. METHODS: By using fluorescent multiple labeling and a DEPArray cell separator, we recovered several single cells or groups of single cells from populations of different origins from IDH-WT GB samples. From each GB sample, we collected astrocytes-like (GFAP+), microglia-like (IBA1+), stem-like cells (CD133+), and endothelial-like cells (CD105+) and performed Copy Number Aberration (CNA) analysis with a low sequencing depth. The same tumors were subjected to a bulk CNA analysis. RESULTS: The tumor partition in its single components allowed single-cell molecular subtyping which revealed new aspects of the GB altered genetic background. CONCLUSIONS: Nowadays, single-cell approaches are leading to a new understanding of GB physiology and disease. Moreover, single-cell CNAs resource will permit new insights into genome heterogeneity, mutational processes, and clonal evolution in malignant tissues.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Patrimônio Genético , Glioblastoma/patologia , Humanos , Microglia/patologia , Microambiente Tumoral/genética
16.
Animals (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34679842

RESUMO

In the last few years MMTV-like nucleotide sequences were detected in some feline and canine mammary tumours. Due to the confirmed role of cats in the epidemiology of the MMTV-like virus, the aim of this study was to investigate the main pathological features of positive feline mammary carcinomas (FMCs). Twenty-four FMCs were collected at the University of Bologna, submitted to laser microdissection and analysed by nested fluorescence-PCR using primer sets specific for MMTV env sequence. For immunohistochemistry, an antibody against MMTV protein 14 (p14) was used. MMTV-like sequences were detected in three out of 24 FMCs (12.5%), one tubular carcinoma, one tubulopapillary carcinoma and one ductal carcinoma. All PCR-positive tumours were also positive for p14. Multiple nucleotide alignment has shown similarity to MMTV ranging from 98% to 100%. All the 102 examined FMCs were submitted to immunohistochemistry for molecular phenotyping. Of the nine MMTV-like positive FMCs, six were basal-like and three luminal-like. Our results demonstrate MMTV-like sequences and protein in FMCs of different geographic areas. Molecular phenotyping could contribute to understand the possible role of MMTV-like virus in FMC tumor biology.

17.
Front Pharmacol ; 12: 648390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149409

RESUMO

Dystrophinopathies cover a spectrum of rare progressive X-linked muscle diseases, arising from DMD mutations. They are among the most common pediatric muscular dystrophies, being Duchenne muscular dystrophy (DMD) the most severe form. Despite the fact that there is still no cure for these serious diseases, unprecedented advances are being made for the development of therapies for DMD. Some of which are already conditionally approved: exon skipping and premature stop codon read-through. The present work aimed to characterize the mutational spectrum of DMD in an Argentinian cohort, to identify candidates for available pharmacogenetic treatments and finally, to conduct a comparative analysis of the Latin American (LA) frequencies of mutations amenable for available DMD therapies. We studied 400 patients with clinical diagnosis of dystrophinopathy, implementing a diagnostic molecular algorithm including: MLPA/PCR/Sanger/Exome and bioinformatics. We also performed a meta-analysis of LA's metrics for DMD available therapies. The employed algorithm resulted effective for the achievement of differential diagnosis, reaching a detection rate of 97%. Because of this, corticosteroid treatment was correctly indicated and validated in 371 patients with genetic confirmation of dystrophinopathy. Also, 20 were eligible for exon skipping of exon 51, 21 for exon 53, 12 for exon 45 and another 70 for premature stop codon read-through therapy. We determined that 87.5% of DMD patients will restore the reading frame with the skipping of only one exon. Regarding nonsense variants, UGA turned out to be the most frequent premature stop codon observed (47%). According to the meta-analysis, only four LA countries (Argentina, Brazil, Colombia and Mexico) provide the complete molecular algorithm for dystrophinopathies. We observed different relations among the available targets for exon skipping in the analyzed populations, but a more even proportion of nonsense variants (∼40%). In conclusion, this manuscript describes the theragnosis carried out in Argentinian dystrophinopathy patients. The implemented molecular algorithm proved to be efficient for the achievement of differential diagnosis, which plays a crucial role in patient management, determination of the standard of care and genetic counseling. Finally, this work contributes with the international efforts to characterize the frequencies and variants in LA, pillars of drug development and theragnosis.

18.
Clin Neurol Neurosurg ; 207: 106735, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119900

RESUMO

OBJECTIVE: Despite recent advances in diagnosis and treatment of the disease, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. While the value of molecular pattern profiles at first diagnosis has been demonstrated, only few studies have examined these biomarkers at the time of recurrence. The aim of this study was to explore the impact of extent of resection at repeated craniotomy on overall survival (OS) of patients with recurrent GBM. In addition, we investigated the molecular pattern profiles at first and second surgery to evaluate possible temporal evolution of these patterns and to assess the effect of these modifications on OS. METHODS: We conducted a retrospective cohort study of 63 patients (mean age 59.2 years) surgically treated at least two times for recurrent GBM between 2006 and 2020. RESULTS: Median OS and progression-free survival (PFS) were 22 months (range 2-168 months) and 10 months (range 1-96 months), respectively. The OS following gross-total resection (GTR) at recurrence for patients with initial GTR (GTR/GTR) was significantly increased (42.6 months) compared with sub-total resection (STR) at reoperation after initial GTR (GTR/STR) (19 months) and with GTR at reoperation after initial STR (STR/GTR) (17 months) (p = 0.0004). Overall surgical morbidity resulted 12.7% and 11.1% at first and at second surgery, respectively. Changes in genetic profiles between first and second surgery of 1p/19q co-deletion, MGMT promoter methylation and p53 mutations occurred in 5.6%, 1.9% and 9.3% of cases, respectively. MGMT promoter methylation appeared to affect OS in univariate analysis at first (p = 0.038) and second surgery (p = 0.107), whereas p53 mutation appeared to affect OS only at second surgery (p = 0.01). In a multivariate analysis female sex (HR = 0.322, 95% CI 0.147-0.705; p = 0.005), PFS (HR = 0.959, 95% CI 0.934-0.986; p = 0.003), GTR at first and second surgery (HR = 0.195, 95% CI 0.091-0.419; p < 0.0001) and adjuvant chemotherapy at recurrence (HR = 0.407, 95% CI 0.206-0.809; p = 0.01) were associated with longer OS. CONCLUSIONS: This study confirmed the role of extent of resection (EOR) at first and at recurrence as a significant predictor of outcome in patients with recurrent GBM. In addition, this study highlighted the concept of a dynamic evolution of GBM genome after initial surgical resection, supporting the need of further studies to investigate the clinical and therapeutic implications of the changes in genetic profiles after initial surgery.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Glioblastoma/genética , Glioblastoma/cirurgia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Estudos de Coortes , Progressão da Doença , Feminino , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Procedimentos Neurocirúrgicos/métodos , Intervalo Livre de Progressão , Estudos Retrospectivos , Transcriptoma , Resultado do Tratamento
19.
Cell Adh Migr ; 15(1): 180-201, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34157951

RESUMO

MiRNAs represent a mechanism that regulates gene expression in many pathological conditions. Exosomes are known to be secreted from all types of cells, and the exosomes-released molecules are crucial messengers that can regulate cellular processes. We investigated the miRNAs content of exosomes released by cancer cells during the invasion . An invasion stimulus has been generated through scratches created on the confluent cells of cancer cell lines: glioblastoma, breast and prostate cancers.Several miRNAs were found to be significantly differentially abundant during the cell invasion , both in common among different cell lines and exclusive. Understanding the language codes among cells involved in invasion can lead to the development of therapies that can inhibit cellular communication, slowing or eventually stopping their activity.


Assuntos
Neoplasias da Mama/genética , Exossomos/genética , Glioblastoma/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Comunicação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino
20.
Cancers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070018

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a fatal tumor with a poor prognosis. The recent developments of liquid biopsies could provide novel diagnostic and prognostic tools in oncology. However, there is limited information about the feasibility of this technique for MPMs. Here, we investigate whether cancer-specific DNA sequences can be detected in pleural fluids and plasma of MPM patients as free circulating tumor DNA (ctDNA). METHODS: We performed whole-exome sequencing on 14 tumor biopsies from 14 patients, and we analyzed 20 patient-specific somatic mutations with digital droplet PCR (ddPCR) in pleural fluids and plasma, using them as cancer-specific tumor biomarkers. RESULTS: Most of the selected mutations could be detected in pleural fluids (94%) and, noteworthy, in plasma (83%) with the use of ddPCR. Pleural fluids showed similar levels of somatically mutated ctDNA (median = 12.75%, average = 16.3%, standard deviation = 12.3) as those detected in solid biopsies (median = 21.95%; average = 22.21%; standard deviation = 9.57), and their paired difference was weakly statistically significant (p = 0.048). On the other hand, the paired difference between solid biopsies and ctDNA from plasma (median = 0.29%, average = 0.89%, standard deviation = 1.40) was highly statistically significant (p = 2.5 × 10-7), corresponding to the important drop of circulating somatically mutated DNA in the bloodstream. However, despite the tiny amount of ctDNA in plasma, varying from 5.57% down to 0.14%, the mutations were detectable at rates similar to those possible for other tumors. CONCLUSIONS: We found robust evidence that mutated DNA is spilled from MPMs, mostly into pleural fluids, proving the concept that liquid biopsies are feasible for MPM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...