Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924092

RESUMO

The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.

2.
New Phytol ; 237(6): 2316-2331, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564991

RESUMO

The establishment of arbuscular mycorrhiza (AM) between plants and Glomeromycotina fungi is preceded by the exchange of chemical signals: fungal released Myc-factors, including chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCO), activate plant symbiotic responses, while root-exuded strigolactones stimulate hyphal branching and boost CO release. Furthermore, fungal signaling reinforcement through CO application was shown to promote AM development in Medicago truncatula, but the cellular and molecular bases of this effect remained unclear. Here, we focused on long-term M. truncatula responses to CO treatment, demonstrating its impact on the transcriptome of both mycorrhizal and nonmycorrhizal roots over several weeks and providing an insight into the mechanistic bases of the CO-dependent promotion of AM colonization. CO treatment caused the long-lasting regulation of strigolactone biosynthesis and fungal accommodation-related genes. This was mirrored by an increase in root didehydro-orobanchol content, and the promotion of accommodation responses to AM fungi in root epidermal cells. Lastly, an advanced downregulation of AM symbiosis marker genes was observed at the latest time point in CO-treated plants, in line with an increased number of senescent arbuscules. Overall, CO treatment triggered molecular, metabolic, and cellular responses underpinning a protracted acceleration of AM development.


Assuntos
Quitosana , Medicago truncatula , Micorrizas , Micorrizas/fisiologia , Medicago truncatula/microbiologia , Quitosana/farmacologia , Quitosana/metabolismo , Simbiose/fisiologia , Quitina/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Sci Adv ; 8(44): eadd1278, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322663

RESUMO

Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.

4.
Plants (Basel) ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336686

RESUMO

Durum wheat is one of the most important agricultural crops, currently providing 18% of the daily intake of calories and 20% of daily protein intake for humans. However, being wheat that is cultivated in arid and semiarid areas, its productivity is threatened by drought stress, which is being exacerbated by climate change. Therefore, the identification of drought tolerant wheat genotypes is critical for increasing grain yield and also improving the capability of crops to uptake and assimilate nutrients, which are seriously affected by drought. This work aimed to determine the effect of arbuscular mycorrhizal fungi (AMF) on plant growth under normal and limited water availability in two durum wheat genotypes (Svevo and Etrusco). Furthermore, we investigated how the plant nutritional status responds to drought stress. We found that the response of Svevo and Etrusco to drought stress was differentially affected by AMF. Interestingly, we revealed that AMF positively affected sulfur homeostasis under drought conditions, mainly in the Svevo cultivar. The results provide a valuable indication that the identification of drought tolerant plants cannot ignore their nutrient use efficiency or the impact of other biotic soil components (i.e., AMF).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...