Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(3): e4914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358255

RESUMO

Cryptochromes are cardinal constituents of the circadian clock, which orchestrates daily physiological rhythms in living organisms. A growing body of evidence points to their participation in pathways that have not traditionally been associated with circadian clock regulation, implying that cryptochromes may be subject to modulation by multiple signaling mechanisms. In this study, we demonstrate that human CRY2 (hCRY2) forms a complex with the large, modular scaffolding protein known as Multi-PDZ Domain Protein 1 (MUPP1). This interaction is facilitated by the calcium-binding protein Calmodulin (CaM) in a calcium-dependent manner. Our findings suggest a novel cooperative mechanism for the regulation of mammalian cryptochromes, mediated by calcium ions (Ca2+ ) and CaM. We propose that this Ca2+ /CaM-mediated signaling pathway may be an evolutionarily conserved mechanism that has been maintained from Drosophila to mammals, most likely in relation to its potential role in the broader context of cryptochrome function and regulation. Further, the understanding of cryptochrome interactions with other proteins and signaling pathways could lead to a better definition of its role within the intricate network of molecular interactions that govern circadian rhythms.


Assuntos
Cálcio , Criptocromos , Animais , Humanos , Criptocromos/metabolismo , Cálcio/metabolismo , Ritmo Circadiano/fisiologia , Drosophila/metabolismo , Transdução de Sinais , Mamíferos
2.
Cells ; 12(9)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37174631

RESUMO

The misfolding and subsequent abnormal accumulation and aggregation of α-Synuclein (αSyn) as insoluble fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD) and several neurodegenerative disorders. A combination of environmental and genetic factors is linked to αSyn misfolding, among which neuroinflammation is recognized to play an important role. Indeed, a number of studies indicate that a Toll-like receptor (TLR)-mediated neuroinflammation might lead to a dopaminergic neural loss, suggesting that TLRs could participate in the pathogenesis of PD as promoters of immune/neuroinflammatory responses. Here we will summarize our current understanding on the mechanisms of αSyn aggregation and misfolding, focusing on the contribution of TLRs to the progression of α-synucleinopathies and speculating on their link with the non-motor disturbances associated with aging and neurodegenerative disorders.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Sinucleinopatias/patologia , Doenças Neuroinflamatórias , alfa-Sinucleína/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Corpos de Lewy , Inflamação/patologia
3.
Front Cell Dev Biol ; 10: 956394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092697

RESUMO

A significant percentage of the mitochondrial mass is replaced on a daily basis via mechanisms of mitochondrial quality control. Through mitophagy (a selective type of autophagy that promotes mitochondrial proteostasis) cells keep a healthy pool of mitochondria, and prevent oxidative stress and inflammation. Furthermore, mitophagy helps adapting to the metabolic demand of the cells, which changes on a daily basis. Core components of the mitophagy process are PINK1 and Parkin, which mutations are linked to Parkinson's Disease. The crucial role of PINK1/Parkin pathway during stress-induced mitophagy has been extensively studied in vitro in different cell types. However, recent advances in the field allowed discovering that mitophagy seems to be only slightly affected in PINK1 KO mice and flies, putting into question the physiological relevance of this pathway in vivo in the whole organism. Indeed, several cell-specific PINK1/Parkin-independent mitophagy pathways have been recently discovered, which appear to be activated under physiological conditions such as those that promote mitochondrial proteome remodeling during differentiation or in response to specific physiological stimuli. In this Mini Review we want to summarize the recent advances in the field, and add another level of complexity by focusing attention on a potentially important aspect of mitophagy regulation: the implication of the circadian clock. Recent works showed that the circadian clock controls many aspects of mitochondrial physiology, including mitochondrial morphology and dynamic, respiratory activity, and ATP synthesis. Furthermore, one of the essential functions of sleep, which is controlled by the clock, is the clearance of toxic metabolic compounds from the brain, including ROS, via mechanisms of proteostasis. Very little is known about a potential role of the clock in the quality control mechanisms that maintain the mitochondrial repertoire healthy during sleep/wake cycles. More importantly, it remains completely unexplored whether (dys)function of mitochondrial proteostasis feedbacks to the circadian clockwork.

4.
Front Physiol ; 11: 997, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013437

RESUMO

Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.

5.
J Insect Physiol ; 127: 104118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33011181

RESUMO

Mushroom bodies are a higher order center for sensory integration, learning and memory of the insect brain. Memory is generally subdivided into different phases. In the model organism Drosophila melanogaster, mushroom bodies have been shown to play a central role in both short- and long-term memory. In D. melanogaster, the gene 2mit codes a transmembrane protein carrying an extracellular Leucin-rich-repeat domain, which is highly transcribed in the mushroom and ellipsoid bodies of the adult fly brain and has a role in the early phase of memory. Utilizing coimmunoprecipitation experiments and mass spectrometry analyses, we have shown that 2MIT interacts with Arginine kinase in adult fly heads. Arginine kinase belongs to the family of Phosphagen kinases and plays a fundamental role in energy homeostasis. Using the GAL4/UAS binary system, we demonstrated that a downregulation of Arginine kinase mainly driven in the mushroom bodies affects short-term memory of Drosophila adult flies, in a courtship conditioning paradigm. As 2mit c03963 hypomorphic mutants showed comparable results when analyzed with the same assay, these data suggest that 2MIT and Arginine kinase are both involved in the same memory phenotype, likely interacting at the level of mushroom bodies. 2MIT and Arginine kinase are conserved among insects, the implications of which, along with their potential roles in other insect taxa are also discussed.


Assuntos
Arginina Quinase/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Memória de Curto Prazo/fisiologia , Receptores de Superfície Celular/genética , Animais , Arginina Quinase/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Masculino , Corpos Pedunculados/fisiologia , Receptores de Superfície Celular/metabolismo
6.
Front Physiol ; 11: 841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848824

RESUMO

[This corrects the article DOI: 10.3389/fphys.2020.00099.].

7.
Front Physiol ; 11: 99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194430

RESUMO

Cryptochromes (CRYs) are flavoproteins that are sensitive to blue light, first identified in Arabidopsis and then in Drosophila and mice. They are evolutionarily conserved and play fundamental roles in the circadian clock of living organisms, enabling them to adapt to the daily 24-h cycles. The role of CRYs in circadian clocks differs among different species: in plants, they have a blue light-sensing activity whereas in mammals they act as light-independent transcriptional repressors within the circadian clock. These two different functions are accomplished by two principal types of CRYs, the light-sensitive plant/insect type 1 CRY and the mammalian type 2 CRY acting as a negative autoregulator in the molecular circadian clockwork. Drosophila melanogaster possesses just one CRY, belonging to type 1 CRYs. Nevertheless, this single CRY appears to have different functions, specific to different organs, tissues, and even subset of cells in which it is expressed. In this review, we will dissect the multiple roles of this single CRY in Drosophila, focusing on the regulatory mechanisms that make its pleiotropy possible.

8.
Front Physiol ; 10: 1442, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849700

RESUMO

Drosophila melanogaster has served as an excellent genetic model to decipher the molecular basis of the circadian clock. Two key proteins, PERIOD (PER) and TIMELESS (TIM), are particularly well explored and a number of various arrhythmic, slow, and fast clock mutants have been identified in classical genetic screens. Interestingly, the free running period (tau, τ) is influenced by temperature in some of these mutants, whereas τ is temperature-independent in other mutant lines as in wild-type flies. This, so-called "temperature compensation" ability is compromised in the mutant timeless allele "ritsu" (tim rit ), and, as we show here, also in the tim blind allele, mapping to the same region of TIM. To test if this region of TIM is indeed important for temperature compensation, we generated a collection of new mutants and mapped functional protein domains involved in the regulation of τ and in general clock function. We developed a protocol for targeted mutagenesis of specific gene regions utilizing the CRISPR/Cas9 technology, followed by behavioral screening. In this pilot study, we identified 20 new timeless mutant alleles with various impairments of temperature compensation. Molecular characterization revealed that the mutations included short in-frame insertions, deletions, or substitutions of a few amino acids resulting from the non-homologous end joining repair process. Our protocol is a fast and cost-efficient systematic approach for functional analysis of protein-coding genes and promoter analysis in vivo. Interestingly, several mutations with a strong temperature compensation defect map to one specific region of TIM. Although the exact mechanism of how these mutations affect TIM function is as yet unknown, our in silico analysis suggests they affect a putative nuclear export signal (NES) and phosphorylation sites of TIM. Immunostaining for PER was performed on two TIM mutants that display longer τ at 25°C and complete arrhythmicity at 28°C. Consistently with the behavioral phenotype, PER immunoreactivity was reduced in circadian clock neurons of flies exposed to elevated temperatures.

9.
Front Physiol ; 10: 133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842743

RESUMO

Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.

10.
Front Mol Neurosci ; 11: 238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072870

RESUMO

Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role as "assembling" protein in the rhabdomeres of the compound eyes. CRY interacts with actin and appears to increase light sensitivity of the eyes by keeping the "signalplex" of the phototransduction cascade close to the membrane. By this way, CRY also enhances light-responses of the circadian clock.

11.
PLoS Genet ; 14(7): e1007500, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30011269

RESUMO

Single microRNAs are usually associated with hundreds of putative target genes that can influence multiple phenotypic traits in Drosophila, ranging from development to behaviour. We investigated the function of Drosophila miR-210 in circadian behaviour by misexpressing it within circadian clock cells. Manipulation of miR-210 expression levels in the PDF (pigment dispersing factor) positive neurons affected the phase of locomotor activity, under both light-dark conditions and constant darkness. PER cyclical expression was not affected in clock neurons, however, when miR-210 was up-regulated, a dramatic alteration in the morphology of PDF ventral lateral neuron (LNv) arborisations was observed. The effect of miR-210 in shaping neuronal projections was confirmed in vitro, using a Drosophila neuronal cell line. A transcriptomic analysis revealed that miR-210 overexpression affects the expression of several genes belonging to pathways related to circadian processes, neuronal development, GTPases signal transduction and photoreception. Collectively, these data reveal the role of miR-210 in modulating circadian outputs in flies and guiding/remodelling PDF positive LNv arborisations and indicate that miR-210 may have pleiotropic effects on the clock, light perception and neuronal development.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Locomoção/fisiologia , MicroRNAs/metabolismo , Neuropeptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem Celular , Relógios Circadianos/genética , Ritmo Circadiano/genética , Escuridão , Regulação para Baixo , Proteínas de Drosophila/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Masculino , MicroRNAs/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regulação para Cima
12.
Front Mol Neurosci ; 10: 165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611590

RESUMO

Drosophila CRYPTOCHROME (CRY) is a blue light sensitive protein with a key role in circadian photoreception. A main feature of CRY is that light promotes an interaction with the circadian protein TIMELESS (TIM) resulting in their ubiquitination and degradation, a mechanism that contributes to the synchronization of the circadian clock to the environment. Moreover, CRY participates in non-circadian functions such as magnetoreception, modulation of neuronal firing, phototransduction and regulation of synaptic plasticity. In the present study we used co-immunoprecipitation, yeast 2 hybrid (Y2H) and in situ proximity ligation assay (PLA) to show that CRY can physically associate with the presynaptic protein BRUCHPILOT (BRP) and that CRY-BRP complexes are located mainly in the visual system. Additionally, we present evidence that light-activated CRY may decrease BRP levels in photoreceptor termini in the distal lamina, probably targeting BRP for degradation.

13.
Mar Genomics ; 29: 61-68, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27157882

RESUMO

The Antarctic krill Euphausia superba experiences almost all marine photic environments throughout its life cycle. Antarctic krill eggs hatch in the aphotic zone up to 1000m depth and larvae develop on their way to the ocean surface (development ascent) and are exposed to different quality (wavelength) and quantity (irradiance) of light. Adults show a daily vertical migration pattern, moving downward during the day and upward during the night within the top 200m of the water column. Seawater acts as a potent chromatic filter and animals have evolved different opsin photopigments to perceive photons of specific wavelengths. We have investigated the transcriptome of E. superba and, using a candidate gene approach, we identified six novel opsins. Five are r-type visual opsins: four middle-wavelength-sensitive (EsRh2, EsRh3, EsRh4 and EsRh5) and one long-wavelength-sensitive (EsRh6). Moreover, we have identified a non-visual opsin, the EsPeropsin. All these newly identified opsin genes were significantly expressed in compound eyes and brain, while only EsPeropsin and EsRh2 were clearly detected also in the abdomen. A temporal modulation in the transcription of these novel opsins was found, but statistically significant oscillations were only observed in EsRrh3 and EsPeropsin. Our results contribute to the dissection of the complex photoreception system of E. superba, which enables this species to respond to the daily and seasonal changes in irradiance and spectral composition in the Southern Ocean.


Assuntos
Euphausiacea/genética , Opsinas/genética , Animais , Regiões Antárticas , Euphausiacea/metabolismo , Opsinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
14.
Sci Rep ; 5: 12605, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26211615

RESUMO

Deregulation of the von Hippel-Lindau tumor suppressor protein (pVHL) is considered one of the main causes for malignant renal clear-cell carcinoma (ccRCC) insurgence. In human, pVHL exists in two isoforms, pVHL19 and pVHL30 respectively, displaying comparable tumor suppressor abilities. Mutations of the p53 tumor suppressor gene have been also correlated with ccRCC insurgence and ineffectiveness of treatment. A recent proteomic analysis linked full length pVHL30 with p53 pathway regulation through complex formation with the p14ARF oncosuppressor. The alternatively spliced pVHL19, missing the first 53 residues, lacks this interaction and suggests an asymmetric function of the two pVHL isoforms. Here, we present an integrative bioinformatics and experimental characterization of the pVHL oncosuppressor isoforms. Predictions of the pVHL30 N-terminus three-dimensional structure suggest that it may exist as an ensemble of structured and disordered forms. The results were used to guide Yeast two hybrid experiments to highlight isoform-specific binding properties. We observed that the physical pVHL/p14ARF interaction is specifically mediated by the 53 residue long pVHL30 N-terminal region, suggesting that this N-terminus acts as a further pVHL interaction interface. Of note, we also observed that the shorter pVHL19 isoform shows an unexpected high tendency to form homodimers, suggesting an additional isoform-specific binding specialization.


Assuntos
Modelos Químicos , Modelos Moleculares , Mapeamento de Interação de Proteínas/métodos , Análise de Sequência de Proteína/métodos , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Relação Estrutura-Atividade , Proteína Supressora de Tumor Von Hippel-Lindau/genética
15.
PLoS One ; 8(7): e68652, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874706

RESUMO

BACKGROUND: Polar environments are characterized by extreme seasonal changes in day length, light intensity and spectrum, the extent of sea ice during the winter, and food availability. A key species of the Southern Ocean ecosystem, the Antarctic krill (Euphausia superba) has evolved rhythmic physiological and behavioral mechanisms to adapt to daily and seasonal changes. The molecular organization of the clockwork underlying these biological rhythms is, nevertheless, still only partially understood. METHODOLOGY/PRINCIPAL FINDINGS: The genome sequence of the Antarctic krill is not yet available. A normalized cDNA library was produced and pyrosequenced in the attempt to identify large numbers of transcripts. All available E. superba sequences were then assembled to create the most complete existing oligonucleotide microarray platform with a total of 32,217 probes. Gene expression signatures of specimens collected in the Ross Sea at five different time points over a 24-hour cycle were defined, and 1,308 genes differentially expressed were identified. Of the corresponding transcripts, 609 showed a significant sinusoidal expression pattern; about 40% of these exibithed a 24-hour periodicity while the other 60% was characterized by a shorter (about 12-hour) rhythm. We assigned the differentially expressed genes to functional categories and noticed that those concerning translation, proteolysis, energy and metabolic process, redox regulation, visual transduction and stress response, which are most likely related to daily environmental changes, were significantly enriched. Two transcripts of peroxiredoxin, thought to represent the ancestral timekeeping system that evolved about 2.5 billion years ago, were also identified as were two isoforms of the EsRh1 opsin and two novel arrestin1 sequences involved in the visual transduction cascade. CONCLUSIONS: Our work represents the first characterization of the krill diurnal transcriptome under natural conditions and provides a first insight into the genetic regulation of physiological changes, which occur around the clock during an Antarctic summer day.


Assuntos
Ritmo Circadiano , Euphausiacea/fisiologia , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Animais , Regiões Antárticas , Metabolismo Energético , Euphausiacea/genética , Euphausiacea/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Transdução de Sinais
16.
Chronobiol Int ; 27(3): 425-45, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20524794

RESUMO

Antarctic krill (Euphausia superba) inhabit a region with strong seasonality in several parameters, such as photoperiod, light intensity, extent of sea ice, and food availability. In particular, seasonal changes in environmental light regimes have been shown to strongly influence krill metabolism, representing control signals for seasonal regulation of physiology of this key Southern Ocean species. Here, we report the identification of a cryptochrome gene, a cardinal component of the clockwork machinery in several organisms. EsCRY appears to be an ortholog of mammalian-like CRYs and clusters with the insect CRY2 subfamily. EsCRY has the canonical bipartite CRY structure, with a conserved N-terminal domain and a highly divergent C-terminus, that bears several binding motifs, some of them shared with insect CRY2 and others peculiar for EsCRY. We have evaluated the temporal expression of Escry both at mRNA and protein levels in individuals harvested from the Ross Sea at different times throughout the 24 h cycle during the Antarctic summer. We observed a daily fluctuation in abundance for Escry mRNA in the head, with high levels around 06:00 h, which is not mirrored by a cycle in the corresponding protein. Our findings represent a first step toward establishing the presence of an endogenous circadian time-keeping mechanism that might allow this organism to synchronize its physiology and behavior to the Antarctic light regimes.


Assuntos
Euphausiacea/metabolismo , Euphausiacea/fisiologia , Animais , Regiões Antárticas , Criptocromos , Meio Ambiente , Camada de Gelo , Mamíferos , Oceanos e Mares , Fotoperíodo , Estações do Ano
17.
BMC Genomics ; 9: 45, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18226200

RESUMO

BACKGROUND: Little is known about the genome sequences of Euphausiacea (krill) although these crustaceans are abundant components of the pelagic ecosystems in all oceans and used for aquaculture and pharmaceutical industry. This study reports the results of an expressed sequence tag (EST) sequencing project from different tissues of Euphausia superba (the Antarctic krill). RESULTS: We have constructed and sequenced five cDNA libraries from different Antarctic krill tissues: head, abdomen, thoracopods and photophores. We have identified 1.770 high-quality ESTs which were assembled into 216 overlapping clusters and 801 singletons resulting in a total of 1.017 non-redundant sequences. Quantitative RT-PCR analysis was performed to quantify and validate the expression levels of ten genes presenting different EST countings in krill tissues. In addition, bioinformatic screening of the non-redundant E. superba sequences identified 69 microsatellite containing ESTs. Clusters, consensuses and related similarity and gene ontology searches were organized in a dedicated E. superba database http://krill.cribi.unipd.it. CONCLUSION: We defined the first tissue transcriptional signatures of E. superba based on functional categorization among the examined tissues. The analyses of annotated transcripts showed a higher similarity with genes from insects with respect to Malacostraca possibly as an effect of the limited number of Malacostraca sequences in the public databases. Our catalogue provides for the first time a genomic tool to investigate the biology of the Antarctic krill.


Assuntos
Euphausiacea/anatomia & histologia , Euphausiacea/genética , Perfilação da Expressão Gênica , Transcrição Gênica/genética , Animais , Biologia Computacional , Etiquetas de Sequências Expressas , Biblioteca Gênica , Repetições de Microssatélites , Especificidade de Órgãos , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
18.
Genet Res ; 89(2): 73-84, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17669228

RESUMO

The lepidopteran Bombyx mori is an insect of considerable scientific and economic importance. Recently, the B. mori circadian clock gene period has been molecularly characterized. We have transformed a B. mori strain with a construct encoding a period double-strand RNA in order to knock-down period gene expression. We observe that this post-transcriptional silencing produces a small but detectable disruption in the egg-hatching rhythm, as well as a reduction in egg-to-adult developmental time, without altering silk production parameters. Thus we show that both circadian and non-circadian phenotypes can be altered by changing per expression, and, at a practical level, these results suggest that per knock-down may provide a suitable strategy for improving the efficiency of rearing, without affecting silk productivity.


Assuntos
Bombyx/genética , Proteínas Nucleares/genética , Animais , Animais Geneticamente Modificados , Ritmo Circadiano/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Masculino , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Fenótipo , Interferência de RNA , Seda/biossíntese
19.
Biochem Biophys Res Commun ; 355(2): 531-7, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17306225

RESUMO

The C-terminus of cryptochrome (CRY) regulates light responses in Drosophila. These include the light-dependent binding of Drosophila dCRY to the clock proteins PERIOD and TIMELESS in a yeast two-hybrid system, which we proved to be a convenient and reliable readout of the behavior of dCRY in vivo. In this study, we present a combination of in silico analysis and experimental validation in yeast, to identify novel functional motifs in the C-terminal region of dCRY. Our results suggest that linear motifs are present in this small region, which is a likely hotspot for molecular interactions.


Assuntos
Flavoproteínas/química , Animais , Criptocromos , Drosophila melanogaster , Eletroforese em Gel Bidimensional , Flavoproteínas/genética , Imunoprecipitação , Mutação , Fosforilação , Conformação Proteica , Técnicas do Sistema de Duplo-Híbrido
20.
Genet Res ; 86(1): 13-30, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16181520

RESUMO

We have isolated the clock gene period (per) from the medfly Ceratitis capitata, one of the most economically important insect pest species. The overall pattern of conserved, non-conserved and functional domains that are observed within dipteran and lepidopteran per orthologues is preserved within the coding sequence. Expression analysis from fly heads revealed a daily oscillation in per mRNA in both light : dark cycles and in constant darkness. However PER protein levels from head extracts did not show any significant evidence for cycling in either of these two conditions. When the Ceratitis per transgene under the control of the Drosophila per promoter and 3'UTR was introduced into Drosophila per -null mutant hosts, the transformants revealed a low level of rescue of behavioural rhythmicity. Nevertheless, the behaviour of the rhythmic transformants showed some similarities to that of ceratitis, suggesting that Ceratitis per carries species-specific information that can evidently affect the Drosophila host's downstream rhythmic behaviour.


Assuntos
Ceratitis capitata/genética , Proteínas Nucleares/genética , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Comportamento Animal , Northern Blotting , Western Blotting , Ritmo Circadiano , Clima , Clonagem Molecular , DNA Complementar/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Éxons , Regulação da Expressão Gênica , Genes de Insetos , Homozigoto , Íntrons , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Circadianas Period , Periodicidade , Filogenia , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Software , Especificidade da Espécie , Temperatura , Fatores de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...