Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; : e20413, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087443

RESUMO

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide. A collection of 283 wild emmer wheat [Triticum turgidum L. subsp. dicoccoides (Körn. ex Asch. & Graebn.) Thell] accessions, representative of the entire Fertile Crescent region where wild emmer naturally occurs, was assembled, genotyped, and characterized for population structure, genetic diversity, and rate of linkage disequilibrium (LD) decay. Then, the collection was employed for mapping Pgt resistance genes, as a proof of concept of the effectiveness of genome-wide association studies in wild emmer. The collection was evaluated in controlled conditions for reaction to six common Pgt pathotypes (TPMKC, TTTTF, JRCQC, TRTTF, TTKSK/Ug99, and TKTTF). Most resistant accessions originated from the Southern Levant wild emmer lineage, with some showing a resistance reaction toward three to six tested races. Association analysis was conducted considering a 12K polymorphic single-nucleotide polymorphisms dataset, kinship relatedness between accessions, and population structure. Eleven significant marker-trait associations (MTA) were identified across the genome, which explained from 17% to up to 49% of phenotypic variance with an average 1.5 additive effect (based on the 1-9 scoring scale). The identified loci were either effective against single or multiple races. Some MTAs colocalized with known Pgt resistance genes, while others represent novel resistance loci useful for durum and bread wheat prebreeding. Candidate genes with an annotated function related to plant response to pathogens were identified at the regions linked to the resistance and defined according to the estimated small LD (about 126 kb), as typical of wild species.

2.
Front Plant Sci ; 14: 1253385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849841

RESUMO

Durum wheat breeding relies on grain yield improvement to meet its upcoming demand while coping with climate change. Kernel size and shape are the determinants of thousand kernel weight (TKW), which is a key component of grain yield, and the understanding of the genetic control behind these traits supports the progress in yield potential. The present study aimed to dissect the genetic network responsible for kernel size components (length, width, perimeter, and area) and kernel shape traits (width-to-length ratio and formcoefficient) as well as their relationships with kernel weight, plant height, and heading date in durum wheat. Quantitative Trait Locus (QTL) mapping was performed on a segregating population of 110 recombinant inbred lines, derived from a cross between the domesticated emmer wheat accession MG5323 and the durum wheat cv. Latino, evaluated in four different environments. A total of 24 QTLs stable across environments were found and further grouped in nine clusters on chromosomes 2A, 2B, 3A, 3B, 4B, 6B, and 7A. Among them, a QTL cluster on chromosome 4B was associated with kernel size traits and TKW, where the parental MG5323 contributed the favorable alleles, highlighting its potential to improve durum wheat germplasm. The physical positions of the clusters, defined by the projection on the T. durum reference genome, overlapped with already known genes (i.e., BIG GRAIN PROTEIN 1 on chromosome 4B). These results might provide genome-based guidance for the efficient exploitation of emmer wheat diversity in wheat breeding, possibly through yield-related molecular markers.

3.
Genes (Basel) ; 14(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37761898

RESUMO

This Special Issue comprises a collection of eight peer-reviewed articles centered around the plant-pathogen interaction with the aim of proposing strategies that enhance plant resistance to pathogens and limit the damage to crop production, utilizing a multidisciplinary approach [...].


Assuntos
Micoses , Melhoramento Vegetal , Produtos Agrícolas/genética , Adaptação Psicológica , Genômica
4.
Genes (Basel) ; 13(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36292678

RESUMO

Stem rinfectionust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is one of the most devastating fungal diseases of durum and common wheat worldwide. The identification of sources of resistance and the validation of QTLs identified through genome-wide association studies is of paramount importance for reducing the losses caused by this disease to wheat grain yield and quality. Four segregating populations whose parents showed contrasting reactions to some Pgt races were assessed in the present study, and 14 QTLs were identified on chromosomes 3A, 4A, 6A, and 6B, with some regions in common between different segregating populations. Several QTLs were mapped to chromosomal regions coincident with previously mapped stem rust resistance loci; however, their reaction to different Pgt races suggest that novel genes or alleles could be present on chromosomes 3A and 6B. Putative candidate genes with a disease-related functional annotation have been identified in the QTL regions based on information available from the reference genome of durum cv. 'Svevo'.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Cromossomos de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética
5.
Antioxidants (Basel) ; 11(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35453479

RESUMO

Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human.

6.
Front Plant Sci ; 13: 1106164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684759

RESUMO

Wild emmer wheat is an excellent reservoir of genetic variability that can be utilized to improve cultivated wheat to address the challenges of the expanding world population and climate change. Bearing this in mind, we have collected a panel of 263 wild emmer wheat (WEW) genotypes across the Fertile Crescent. The genotypes were grown in different locations and phenotyped for heading date. Genome-wide association mapping (GWAS) was carried out, and 16 SNPs were associated with the heading date. As the flowering time is controlled by photoperiod and vernalization, we sequenced the VRN1 gene, the most important of the vernalization response genes, to discover new alleles. Unlike most earlier attempts, which characterized known VRN1 alleles according to a partial promoter or intron sequences, we obtained full-length sequences of VRN-A1 and VRN-B1 genes in a panel of 95 wild emmer wheat from the Fertile Crescent and uncovered a significant sequence variation. Phylogenetic analysis of VRN-A1 and VRN-B1 haplotypes revealed their evolutionary relationships and geographic distribution in the Fertile Crescent region. The newly described alleles represent an attractive resource for durum and bread wheat improvement programs.

7.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063853

RESUMO

Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/genética , Agricultura/métodos , Animais , Genes de Plantas/genética , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Humanos , Melhoramento Vegetal/métodos
8.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803699

RESUMO

Leaf rust and powdery mildew are two important foliar diseases in wheat. A recombinant inbred line (RIL) population, obtained by crossing two bread wheat cultivars ('Victo' and 'Spada'), was evaluated for resistance to the two pathogens at seedling stage. Upon developing a genetic map of 8726 SNP loci, linkage analysis identified three resistance Quantitative Trait Loci (QTLs), with 'Victo' contributing the resistant alleles to all loci. One major QTL (QPm.gb-7A) was detected in response to Blumeria graminis on chromosome 7A, which explained 90% of phenotypic variation (PV). The co-positional relationship with known powdery mildew (Pm) resistance loci suggested that a new source of resistance was identified in T. aestivum. Two QTLs were detected in response to Puccinia triticina: a major gene on chromosome 5D (QLr.gb-5D), explaining a total PV of about 59%, and a minor QTL on chromosome 2B (QLr.gb-2B). A positional relationship was observed between the QLr.gb-5D with the known Lr1 gene, but polymorphisms were found between the cloned Lr1 and the corresponding 'Victo' allele, suggesting that QLr.gb-5D could represent a new functional Lr1 allele. Lastly, upon anchoring the QTL on the T. aestivum reference genome, candidate genes were hypothesized on the basis of gene annotation and in silico gene expression analysis.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Triticum/imunologia , Triticum/microbiologia , Sequência de Aminoácidos , Ascomicetos/isolamento & purificação , Pão , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Simulação por Computador , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Puccinia/isolamento & purificação , Locos de Características Quantitativas/genética
9.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291583

RESUMO

Durum wheat (Triticum turgidum L. ssp. durum) is a minor crop grown on about 17 million hectares of land worldwide. Several grain characteristics determine semolina's high end-use quality, such as grain protein content (GPC) which is directly related to the final products' nutritional and technological values. GPC improvement could be pursued by considering a candidate gene approach. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a bottleneck in the first step of nitrogen assimilation. QTL for GPC have been located on all chromosomes, and several major ones have been reported on 2A and 2B chromosomes, where GS2 and Fd-GOGAT genes have been mapped. A useful and efficient method to validate a putative QTL is the constitution of near-isogenic lines (NILs) by using the marker found to be associated to that QTL. Here, we present the development of two distinct sets of heterogeneous inbred family (HIF)- based NILs segregating for GS2 and Fd-GOGAT genes obtained from heterozygous lines at those loci, as well as their genotypic and phenotypic characterizations. The results allow the validation of the previously identified GPC QTL on 2A and 2B chromosomes, along with the role of these key genes in GPC control.


Assuntos
Aminoácido Oxirredutases/genética , Glutamato-Amônia Ligase/genética , Proteínas de Grãos/metabolismo , Locos de Características Quantitativas , Triticum/genética , Aminoácido Oxirredutases/metabolismo , Sequência de Bases , Cromossomos de Plantas , Glutamato-Amônia Ligase/metabolismo , Fenótipo , Melhoramento Vegetal , Regiões Promotoras Genéticas , Triticum/metabolismo
10.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722187

RESUMO

Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha-1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha-1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.


Assuntos
Cromossomos de Plantas , Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Cruzamentos Genéticos , Desidratação/genética , Desidratação/metabolismo , Estudo de Associação Genômica Ampla , Triticum/genética , Triticum/crescimento & desenvolvimento
11.
Front Plant Sci ; 11: 569905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408724

RESUMO

Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.

12.
BMC Genomics ; 20(1): 526, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31242866

RESUMO

BACKGROUND: Flavescence dorée is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus. Differences in susceptibility among grapevine varieties suggest the existence of specific genetic features associated with resistance to the phytoplasma and/or possibly with its vector. In this work, RNA-Seq was used to compare early transcriptional changes occurring during the three-trophic interaction between the phytoplasma, its vector and the grapevine, represented by two different cultivars, one very susceptible to the disease and the other scarcely susceptible. RESULTS: The comparative analysis of the constitutive transcriptomic profiles suggests the existence of passive defense strategies against the insect and/or the phytoplasma in the scarcely-susceptible cultivar. Moreover, the attack by the infective vector on the scarcely-susceptible variety prompted immediate and substantial transcriptomic changes that led to the rapid erection of further active defenses. On the other hand, in the most susceptible variety the response was delayed and mainly consisted of the induction of phytoalexin synthesis. Surprisingly, the jasmonic acid- and ethylene-mediated defense reactions, activated by the susceptible cultivar following FD-free insect feeding, were not detected in the presence of the phytoplasma-infected vector. CONCLUSIONS: The comparison of the transcriptomic response in two grapevine varieties with different levels of susceptibility to Flavescence dorèe highlighted both passive and active defense mechanisms against the vector and/or the pathogen in the scarcely-susceptible variety, as well as the capacity of the phytoplasmas to repress the defense reaction against the insect in the susceptible variety.


Assuntos
Comportamento Alimentar , Perfilação da Expressão Gênica , Hemípteros/fisiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Vitis/genética , Vitis/microbiologia , Animais , Antioxidantes/metabolismo , Parede Celular/metabolismo , Suscetibilidade a Doenças , Vetores de Doenças , Genômica , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Vitis/citologia , Vitis/metabolismo
13.
Front Plant Sci ; 10: 448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057571

RESUMO

Kernel size and shape are important parameters determining the wheat profitability, being main determinants of yield and its technological quality. In this study, a segregating population of 118 recombinant inbred lines, derived from a cross between the Iranian durum landrace accession "Iran_249" and the Iranian durum cultivar "Zardak", was used to investigate durum wheat kernel morphology factors and their relationships with kernel weight, and to map the corresponding QTLs. A high density genetic map, based on wheat 90k iSelect Infinium SNP assay, comprising 6,195 markers, was developed and used to perform the QTL analysis for kernel length and width, traits related to kernel shape and weight, and heading date, using phenotypic data from three environments. Overall, a total of 31 different QTLs and 9 QTL interactions for kernel size, and 21 different QTLs and 5 QTL interactions for kernel shape were identified. The landrace Iran_249 contributed the allele with positive effect for most of the QTLs related to kernel length and kernel weight suggesting that the landrace might have considerable potential toward enhancing the existing gene pool for grain shape and size traits and for further yield improvement in wheat. The correlation among traits and co-localization of corresponding QTLs permitted to define 11 clusters suggesting causal relationships between simplest kernel size trait, like kernel length and width, and more complex secondary trait, like kernel shape and weight related traits. Lastly, the recent release of the T. durum reference genome sequence allowed to define the physical interval of our QTL/clusters and to hypothesize novel candidate genes inspecting the gene content of the genomic regions associated to target traits.

14.
Nat Genet ; 51(5): 885-895, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962619

RESUMO

The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo. The assembly enabled genome-wide genetic diversity analyses revealing the changes imposed by thousands of years of empirical selection and breeding. Regions exhibiting strong signatures of genetic divergence associated with domestication and breeding were widespread in the genome with several major diversity losses in the pericentromeric regions. A locus on chromosome 5B carries a gene encoding a metal transporter (TdHMA3-B1) with a non-functional variant causing high accumulation of cadmium in grain. The high-cadmium allele, widespread among durum cultivars but undetected in wild emmer accessions, increased in frequency from domesticated emmer to modern durum wheat. The rapid cloning of TdHMA3-B1 rescues a wild beneficial allele and demonstrates the practical use of the Svevo genome for wheat improvement.


Assuntos
Triticum/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Cromossomos de Plantas/genética , Domesticação , Variação Genética , Genoma de Planta , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Sintenia , Tetraploidia , Triticum/classificação , Triticum/metabolismo
15.
Front Plant Sci ; 10: 436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024600

RESUMO

The optimal root system architecture (RSA) of a crop is context dependent and critical for efficient resource capture in the soil. Narrow root growth angle promoting deeper root growth is often associated with improved access to water and nutrients in deep soils during terminal drought. RSA, therefore is a drought-adaptive trait that could minimize yield losses in regions with limited rainfall. Here, GWAS for seminal root angle (SRA) identified seven marker-trait associations clustered on chromosome 6A, representing a major quantitative trait locus (qSRA-6A) which also displayed high levels of pairwise LD (r 2 = 0.67). Subsequent haplotype analysis revealed significant differences between major groups. Candidate gene analysis revealed loci related to gravitropism, polar growth and hormonal signaling. No differences were observed for root biomass between lines carrying hap1 and hap2 for qSRA-6A, highlighting the opportunity to perform marker-assisted selection for the qSRA-6A locus and directly select for wide or narrow RSA, without influencing root biomass. Our study revealed that the genetic predisposition for deep rooting was best expressed under water-limitation, yet the root system displayed plasticity producing root growth in response to water availability in upper soil layers. We discuss the potential to deploy root architectural traits in cultivars to enhance yield stability in environments that experience limited rainfall.

16.
Int J Mol Sci ; 19(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563213

RESUMO

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major biotic constraint to wheat production worldwide. Disease resistant cultivars are a sustainable means for the efficient control of this disease. To identify quantitative trait loci (QTLs) conferring resistance to stem rust at the seedling stage, an association mapping panel consisting of 230 tetraploid wheat accessions were evaluated for reaction to five Pgt races under greenhouse conditions. A high level of phenotypic variation was observed in the panel in response to all of the races, allowing for genome-wide association mapping of resistance QTLs in wild, landrace, and cultivated tetraploid wheats. Twenty-two resistance QTLs were identified, which were characterized by at least two marker-trait associations. Most of the identified resistance loci were coincident with previously identified rust resistance genes/QTLs; however, six regions detected on chromosomes 1B, 5A, 5B, 6B, and 7B may be novel. Availability of the reference genome sequence of wild emmer wheat accession Zavitan facilitated the search for candidate resistance genes in the regions where QTLs were identified, and many of them were annotated as NOD (nucleotide binding oligomerization domain)-like receptor (NLR) genes or genes related to broad spectrum resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Basidiomycota/patogenicidade , Cromossomos de Plantas/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Tetraploidia , Triticum/microbiologia
17.
Int J Mol Sci ; 19(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867062

RESUMO

NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas NLR/genética , Imunidade Vegetal , Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/genética
18.
Plant Sci ; 241: 295-306, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26706080

RESUMO

We previously isolated four cDNAs in durum wheat, TdsPLA2I, TdsPLA2II, TdsPLA2III and TdsPLA2IV, that encode proteins with homology to plant secretory phospholipases A2 (sPLA2s) (Verlotta et al., Int. J. Mol. Sci., 14, 2013, 5146-5169). In this study, we have further characterized TdsPLA2II and TdsPLA2III sequences that, on the basis of our previous findings, might encode sPLA2 isoforms with different features. Functional analysis revealed that, similarly to other known sPLA2s, TdsPLA2II and TdsPLA2III have an optimum at pH 9.0, require Ca(2+), are heat stable, and are inhibited by the disulfide-bond-reducing agent dithiothreitol. However, differences emerged between these TdsPLA2 isoforms. Transcript analysis revealed that the TdsPLA2III gene is highly up-regulated under different environmental stresses; conversely, the TdsPLA2II gene is expressed at constant levels under almost all of the stress conditions examined. Moreover, TdsPLA2II is saturated at micromolar substrate and Ca(2+) concentrations, whereas TdsPLA2III requires millimolar concentrations to reach maximal activity. This suggests that TdsPLA2II normally functions under optimal conditions in vivo, whereas TdsPLA2III is only partially activated, depending on the specific phospholipid and Ca(2+) levels. Altogether these data lead to the hypothesis that in vivo TdsPLA2II and TdsPLA2III are differently regulated at both molecular and biochemical level and that TdsPLA2III plays a major role in durum wheat response to adverse environmental conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Fosfolipases A2 Secretórias/genética , Proteínas de Plantas/genética , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Dados de Sequência Molecular , Fosfolipases A2 Secretórias/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Triticum/metabolismo
19.
Front Plant Sci ; 6: 57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717333

RESUMO

Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.

20.
Physiol Plant ; 147(1): 55-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22938043

RESUMO

The chloroplast is the central switch of the plant's response to cold and light stress. The ability of many plant species to develop a cold tolerant phenotype is dependent on the presence of light and photosynthetic activity during low-temperature growth. Light exposure at low temperature stimulates an over-reduction of the plastoquinone pool as well as the accumulation of reactive oxygen species, and both metabolic conditions generate a retrograde signal controlling nuclear gene expression. At the same time the chloroplast is the target of many cold acclimation processes which are the results of the chloroplast-nucleus cross-talk. Often, the extent of cold acclimation of the chloroplast is tightly correlated with the overall plant tolerance to chilling and freezing temperatures, a finding suggesting that the chloroplast cold acclimation could be the rate limiting factor in the adaptation to low temperature.


Assuntos
Aclimatação/fisiologia , Cloroplastos/genética , Cloroplastos/fisiologia , Temperatura Baixa , Proteínas de Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Luz , Fotossíntese , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...