Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0301294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547096

RESUMO

Egypt is among the world's largest producers of sugarcane. This crop is of great economic importance in the country, as it serves as a primary source of sugar, a vital strategic material. The pre-cutting planting mode is the most used technique for cultivating sugarcane in Egypt. However, this method is plagued by several issues that adversely affect the quality of the crop. A proposed solution to these problems is the implementation of a sugarcane-seed-cutting device, which incorporates automatic identification technology for optimal efficiency. The aim is to enhance the cutting quality and efficiency of the pre-cutting planting mode of sugarcane. The developed machine consists of a feeding system, a node scanning and detection system, a node cutting system, a sugarcane seed counting and monitoring system, and a control system. The current research aims to study the pulse widths (PW) of three-color channels (R, G, and B) of the RGB color sensors under laboratory conditions. The output PW of red, green, and blue channel values were recorded at three color types for hand-colored nodes [black, red, and blue], three speeds of the feeding system [7.5 m/min, 5 m/min, and 4.3 m/min], three installing heights of the RGB color sensors [2.0 cm, 3.0 cm, and 4.0 cm], and three widths of the colored line [10.0 mm, 7.0 mm, and 3.0 mm]. The laboratory test results s to identify hand-colored sugarcane nodes showed that the recognition rate ranged from 95% to 100% and the average scanning time ranged from 1.0 s to 1.75 s. The capacity of the developed machine ranged up to 1200 seeds per hour. The highest performance of the developed machine was 100% when using hand-colored sugarcane stalks with a 10 mm blue color line and installing the RGB color sensor at 2.0 cm in height, as well as increasing the speed of the feeding system to 7.5 m/min. The use of IoT and RGB color sensors has made it possible to get analytical indicators like those achieved with other automatic systems for cutting sugar cane seeds without requiring the use of computers or expensive, fast industrial cameras for image processing.


Assuntos
Internet das Coisas , Saccharum , Processamento de Imagem Assistida por Computador , Tecnologia , Sementes
2.
PLoS One ; 19(3): e0300550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512925

RESUMO

The current electric vehicles (EVs) market is experiencing significant expansion, underscoring the need to address challenges associated with the limited driving range of EVs. A primary focus in this context is the improvement of the wireless charging process. To contribute to this research area, this study introduces a circular spiral coil design that incorporates transceiver coils. First, an in-depth analysis is conducted using Ansys Maxwell software to assess the effectiveness of the proposed solution through the magnetic field distribution, inductance properties, and mutual inductance between receiver and transmitter coils. In the next step, a direct shielding technique is applied, integrating a ferrite core bar to reduce power leakage and enhance power transmission efficiency. The ferrite magnetic shielding guides magnetic field lines, resulting in a significant reduction in flux leakage and improved power transmission. Lastly, a magnetic resonance series (SS) compensation wireless system is developed to achieve high coupling efficiency and superior performance. The system's effectiveness is evaluated through co-simulation using Ansys Simplorer software. The results confirm the effectiveness of the proposed solution, showing its ability to transmit 3.6 kilowatts with a success rate approaching 99%. This contribution significantly advances the development of wireless charging systems for electric vehicles, addressing concerns and promoting global adoption.


Assuntos
Fontes de Energia Elétrica , Tecnologia sem Fio , Eletricidade , Compostos Férricos
3.
PLoS One ; 19(1): e0296987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277423

RESUMO

Nuclear energy (NE) is seen as a reliable choice for ensuring the security of the world's energy supply, and it has only lately begun to be advocated as a strategy for reducing climate change in order to meet low-carbon energy transition goals. To achieve flexible operation across a wide operating range when it participates in peak regulation in the power systems, the pressurised water reactor (PWR) NE systems must overcome the nonlinearity problem induced by the substantial variation. In light of this viewpoint, the objective of this work is to evaluate the reactor core (main component) of the NE system via different recent optimization techniques. The PWR, which is the most common form, is the reactor under investigation. For controlling the movement of control rods that correspond with reactivity for power regulation the PWR, PID controller is employed. This study presents a dynamic model of the PWR, which includes the reactor core, the upper and lower plenums, and the piping that connects the reactor core to the steam alternator is analyzed and investigated. The PWR dynamic model is controlled by a PID controller optimized by the gold rush optimizer (GRO) built on the integration of the time-weighted square error performance indicator. Additionally, to exhibit the efficacy of the presented GRO, the dragonfly approach, Arithmetic algorithm, and planet optimization algorithm are used to adjust the PID controller parameters. Furthermore, a comparison among the optimized PID gains with the applied algorithms shows great accuracy, efficacy, and effectiveness of the proposed GRO. MATLAB\ Simulink program is used to model and simulate the system components and the applied algorithms. The simulation findings demonstrate that the suggested optimized PID control strategy has superior efficiency and resilience in terms of less overshoot and settling time.


Assuntos
Odonatos , Água , Animais , Algoritmos , Simulação por Computador , Vapor
4.
PLoS One ; 18(11): e0293613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37922271

RESUMO

Solar energy, a prominent renewable resource, relies on photovoltaic systems (PVS) to capture energy efficiently. The challenge lies in maximizing power generation, which fluctuates due to changing environmental conditions like irradiance and temperature. Maximum Power Point Tracking (MPPT) techniques have been developed to optimize PVS output. Among these, the incremental conductance (INC) method is widely recognized. However, adapting INC to varying environmental conditions remains a challenge. This study introduces an innovative approach to adaptive MPPT for grid-connected PVS, enhancing classical INC by integrating a PID controller updated through a fuzzy self-tuning controller (INC-FST). INC-FST dynamically regulates the boost converter signal, connecting the PVS's DC output to the grid-connected inverter. A comprehensive evaluation, comparing the proposed adaptive MPPT technique (INC-FST) with conventional MPPT methods such as INC, Perturb & Observe (P&O), and INC Fuzzy Logic (INC-FL), was conducted. Metrics assessed include current, voltage, efficiency, power, and DC bus voltage under different climate scenarios. The proposed MPPT-INC-FST algorithm demonstrated superior efficiency, achieving 99.80%, 99.76%, and 99.73% for three distinct climate scenarios. Furthermore, the comparative analysis highlighted its precision in terms of control indices, minimizing overshoot, reducing rise time, and maximizing PVS power output.


Assuntos
Fontes de Energia Elétrica , Modelos Teóricos , Simulação por Computador , Algoritmos , Lógica Fuzzy
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA