Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 18(1): 73, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866947

RESUMO

BACKGROUND: Accurate diagnosis of malaria is important for effective disease management and control. In Cameroon, presumptive clinical diagnosis, thick-film microscopy (TFM), and rapid diagnostic tests (RDT) are commonly used to diagnose cases of Plasmodium falciparum malaria. However, these methods lack sensitivity to detect low parasitaemia. Polymerase chain reaction (PCR), on the other hand, enhances the detection of sub-microscopic parasitaemia making it a much-needed tool for epidemiological surveys, mass screening, and the assessment of interventions for malaria elimination. Therefore, this study sought to determine the frequency of cases missed by traditional methods that are detected by PCR. METHODS: Blood samples, collected from 551 febrile Cameroonian patients between February 2014 and February 2015, were tested for P. falciparum by microscopy, RDT and PCR. The hospital records of participants were reviewed to obtain data on the clinical diagnosis made by the health care worker. RESULTS: The prevalence of malaria by microscopy, RDT and PCR was 31%, 45%, and 54%, respectively. However, of the 92% of participants diagnosed as having clinical cases of malaria by the health care worker, 38% were malaria-negative by PCR. PCR detected 23% and 12% more malaria infections than microscopy and RDT, respectively. A total of 128 (23%) individuals had sub-microscopic infections in the study population. The sensitivity of microscopy, RDT, and clinical diagnosis was 57%, 78% and 100%; the specificity was 99%, 94%, and 17%; the positive predictive values were 99%, 94%, and 59%; the negative predictive values were 66%, 78%, and 100%, respectively. Thus, 41% of the participants clinically diagnosed as having malaria had fever caused by other pathogens. CONCLUSIONS: Malaria diagnostic methods, such as TFM and RDT missed 12-23% of malaria cases detected by PCR. Therefore, traditional diagnostic approaches (TFM, RDT and clinical diagnosis) are not adequate when accurate epidemiological data are needed for monitoring malaria control and elimination interventions.


Assuntos
Sangue/parasitologia , Testes Diagnósticos de Rotina/métodos , Imunoensaio/métodos , Malária Falciparum/diagnóstico , Microscopia/métodos , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Camarões , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Sensibilidade e Especificidade , Inquéritos e Questionários , Adulto Jovem
2.
Malar J ; 16(1): 434, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078786

RESUMO

BACKGROUND: Current malaria diagnostic methods require blood collection, that may be associated with pain and the risk of transmitting blood-borne pathogens, and often create poor compliance when repeated sampling is needed. On the other hand, the collection of saliva is minimally invasive; but saliva has not been widely used for the diagnosis of malaria. The aim of this study was to evaluate the diagnostic performance of saliva collected and stored at room temperature using the OMNIgene®â€¢ORAL kit for diagnosing Plasmodium falciparum malaria. METHODS: Paired blood and saliva samples were collected from 222 febrile patients in Cameroon. Saliva samples were collected using the OMNIgene®â€¢ORAL (OM-501) kit and stored at room temperature for up to 13 months. Thick blood film microscopy (TFM) was used to detect P. falciparum blood-stage parasites in blood. Detection of P. falciparum DNA in blood and saliva was based on amplification of the multi-copy 18 s rRNA gene using the nested-polymerase chain reaction (nPCR). RESULTS: Prevalence of malaria detected by TFM, nPCR-saliva and nPCR-blood was 22, 29, and 35%, respectively. Using TFM as the gold standard, the sensitivity of nPCR-saliva and nPCR-blood in detecting P. falciparum was 95 and 100%, respectively; with corresponding specificities of 93 and 87%. When nPCR-blood was used as gold standard, the sensitivity of nPCR-saliva and microscopy was 82 and 68%, respectively; whereas, the specificity was 99 and 100%, respectively. Nested PCR-saliva had a very good agreement with both TFM (kappa value 0.8) and blood PCR (kappa value 0.8). At parasitaemia > 10,000 parasites/µl of blood, the sensitivity of nPCR-saliva was 100%. Nested PCR-saliva detected 16 sub-microscopic malaria infections. One year after sample collection, P. falciparum DNA was detected in 80% of saliva samples stored at room temperature. CONCLUSIONS: Saliva can potentially be used as an alternative non-invasive sample for the diagnosis of malaria and the OMNIgene®â€¢ORAL kit is effective at transporting and preserving malaria parasite DNA in saliva at room temperature. The technology described in this study for diagnosis of malaria in resource-limited countries adds on to the armamentarium needed for elimination of malaria.


Assuntos
Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Saliva/parasitologia , Adolescente , Adulto , Idoso , Camarões/epidemiologia , Criança , Pré-Escolar , Testes Diagnósticos de Rotina/instrumentação , Feminino , Humanos , Malária Falciparum/epidemiologia , Masculino , Microscopia/métodos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Prevalência , Temperatura , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...