Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 330, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039512

RESUMO

Globally, tropical forests are assumed to be an important source of atmospheric nitrous oxide (N2O) and sink for methane (CH4). Yet, although the Congo Basin comprises the second largest tropical forest and is considered the most pristine large basin left on Earth, in situ N2O and CH4 flux measurements are scarce. Here, we provide multi-year data derived from on-ground soil flux (n = 1558) and riverine dissolved gas concentration (n = 332) measurements spanning montane, swamp, and lowland forests. Each forest type core monitoring site was sampled at least for one hydrological year between 2016 - 2020 at a frequency of 7-14 days. We estimate a terrestrial CH4 uptake (in kg CH4-C ha-1 yr-1) for montane (-4.28) and lowland forests (-3.52) and a massive CH4 release from swamp forests (non-inundated 2.68; inundated 341). All investigated forest types were a N2O source (except for inundated swamp forest) with 0.93, 1.56, 3.5, and -0.19 kg N2O-N ha-1 yr-1 for montane, lowland, non-inundated swamp, and inundated swamp forests, respectively.

2.
Nat Plants ; 5(2): 133-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664730

RESUMO

Quantifying carbon dynamics in forests is critical for understanding their role in long-term climate regulation1-4. Yet little is known about tree longevity in tropical forests3,5-8, a factor that is vital for estimating carbon persistence3,4. Here we calculate mean carbon age (the period that carbon is fixed in trees7) in different strata of African tropical forests using (1) growth-ring records with a unique timestamp accurately demarcating 66 years of growth in one site and (2) measurements of diameter increments from the African Tropical Rainforest Observation Network (23 sites). We find that in spite of their much smaller size, in understory trees mean carbon age (74 years) is greater than in sub-canopy (54 years) and canopy (57 years) trees and similar to carbon age in emergent trees (66 years). The remarkable carbon longevity in the understory results from slow and aperiodic growth as an adaptation to limited resource availability9-11. Our analysis also reveals that while the understory represents a small share (11%) of the carbon stock12,13, it contributes disproportionally to the forest carbon sink (20%). We conclude that accounting for the diversity of carbon age and carbon sequestration among different forest strata is critical for effective conservation management14-16 and for accurate modelling of carbon cycling4.


Assuntos
Sequestro de Carbono , Carbono/análise , Florestas , Árvores/fisiologia , Ciclo do Carbono , República Democrática do Congo , Fatores de Tempo , Árvores/crescimento & desenvolvimento , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...