Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(2): 770-780, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36686912

RESUMO

Solar-to-fuel conversion is a novel clean energy approach that has gained the interest of many researchers. Solar-driven photocatalysts have become essential to providing valuable fuel gases such as methane and hydrogen. Solar energy has emerged as a renewable, abundant energy source that can efficiently drive photochemical reactions through plasmonic photocatalysis. As a capping agent, orange peel extract was used in this study in a microwave-assisted green method to incorporate titanium dioxide with distinct amounts (3, 5, and 7 wt%) from Pd-plasmonic nanoparticles (2-5 nm). The leading role for plasmonic nanoparticles made from Pd-metal is enhancing the photocatalyst's ability to capture visible light, improving its performance. X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET) surface area analysis, and UV-vis DRS analyses have investigated the obtained plasmonic photocatalysts' crystallographic, morphological, and optical characteristics. The UV-vis absorption spectra demonstrated the visible light absorption capacity attributed to the localized surface plasmonic resonance (LSPR) behavior of the newly formed nanoplasmonic photocatalysts. The generated Pd-TiO2 nanomaterials' photocatalytic activity has been examined and evaluated for combustible gas production, including the formation of CH4 and H2 from the photocatalytic degradation of Reactive Yellow 15 (RY) during a deoxygenated photoreaction in a homemade solar photobiogas reactor.

2.
BMC Chem ; 16(1): 74, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192791

RESUMO

The photocatalytic degradation (PCD) of ethanol in an inert atmosphere on catalysis was explored in a lab-scale experiment. A morphologically tuned nanostructured controlled ZnO and ZnO/TiO2 nanocomposites were synthesized using a simple hydrothermal process under the control of several functionally capping agents marking a milestone in photocatalysis. It is possible that this could be modified to produce photobiogas out of organic dye pollution. The photocatalysts were characterized by the use of X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET) surface area analyzer, Scanning electron microscope (SEM-EDX), and UV-Vis absorption spectroscopy. The photocatalytic activity of the ZnO and ZnO-TiO2 composite nanostructures was evaluated for the photodegradation of the Tartrazine (Tr) dye aqueous solution. Where the composite matrix exhibits higher photocatalytic activity than pure ZnO nanomaterials as a result of the synergistic interaction between ZnO and TiO2 particles. This is mainly due to its higher surface area than pure ZnO. Moreover, the photocatalytic activity of the tuned nanostructured materials is found to be enhanced by the effect of the capping agent and controlling the morphology. This increase is accompanied by a significant shift in surface shape and band gap energy. According to the findings, the designed morphologies of pure ZnO photocatalyst impacted the formation of photobiogas from the photocatalytic decomposition of ethanol as a model of organic pollutants in wastewater. However, when using composite ZnO/TiO2 photocatalysts, the rate of CH4 formation is significantly lower than when using ZnO photocatalysts alone. This may be attributed to the synergetic effect between ZnO and TiO2 particles which leads to a remarkable reduction in the newly formed band gap energy. This may result in a fast rate of recombination between the photogenerated charge carriers (e- and h+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA