Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 43(13): 5095-105, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24121604

RESUMO

The isolation of six isomeric, low-symmetry, dicobaltacarboranes with bicapped hexagonal antiprismatic cage structures, always in low yield, is described from reactions in which 13-vertex cobaltacarborane anions and sources of cobalt-containing cations were present. The vertex-to-centroid distance (VCD) and boron-H distance (BHD) methods are used to locate the correct C atom positions in the cages, thus allowing the compounds to be identified as 1,13-Cp2-1,13,2,10-closo-Co2C2B10H12 (1), 1,8-Cp2-3-OEt-1,8,2,10-closo-Co2C2B10H11 (2), 1,13-Cp2-1,13,2,9-closo-Co2C2B10H12 (3), 1,8-Cp2-1,8,2,4-closo-Co2C2B10H12 (4), 1,13-Cp2-1,13,2,4-closo-Co2C2B10H12 (5) and 1,8-Cp2-1,8,2,5-closo-Co2C2B10H12 (6). It is shown that a common alternative method of cage C atom identification, using refined (as B) U(eq) values, does not work well, at least in these cases. Having identified the correct isomeric forms of the six dicobaltacarboranes, their syntheses are tentatively rationalised in terms of the direct electrophilic insertion of a {CpCo(+)} fragment into [CpCoC2B10](-) anions and it is demonstrated that compounds 1, 4, 5 and 6 can be successfully prepared by deliberately performing such reactions.

2.
Dalton Trans ; 42(3): 645-64, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22945741

RESUMO

Replacing a boron vertex in a [B(n)H(n)](2-) cluster with a smaller atom, e.g. carbon, results in the distance from that atom to the polyhedral centroid being shorter. This forms the basis of a simple but very effective method of distinguishing between B and C atoms in (hetero)carboranes that have been studied crystallographically, the Vertex-to-Centroid Distance (VCD) method. Examples of well-characterised icosahedral and sub-icosahedral closo carboranes, nido carboranes, icosahedral metallacarboranes and supraicosahedral metallacarboranes are used to illustrate the generality of the VCD method. In this process a number of structures are identified in which the method suggests B/C disorder not previously recognised and some structures in which it appears that a cage C atom has been wrongly assigned. The largest sub-group of heterocarboranes is the family of 3,1,2-MC(2)B(9) compounds, and for these species consideration of Exopolyhedral Ligand Orientation (ELO) can sometimes be used to quickly suggest when a literature structure is suspect in terms of cage C atom positioning. The crystal structure of one such compound, 3,3-NO(3)-3-PPh(3)-3,1,2-closo-RhC(2)B(9)H(11), has been redetermined and the correct location of the cage C atoms established.

3.
Dalton Trans ; 42(3): 671-9, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22964659

RESUMO

A high-yielding synthesis of the 13-vertex cobaltacarborane 4-Cp-4,1,12-closo-CoC(2)B(10)H(12) is described and this compound used to prepare the known 14-vertex species 1,14-Cp(2)-1,14,2,10-closo-Co(2)C(2)B(10)H(12) (II) and 1-(p-cymene)-14-Cp-1,14,2,10-closo-RuCoC(2)B(10)H(12) (IV), the latter by a new route. The related species 1,14-Cp(2)-2,10-Me(2)-1,14,2,10-closo-Co(2)C(2)B(10)H(10) (1) and 1,14-(η-C(9)H(7))(2)-1,14,2,10-closo-Co(2)C(2)B(10)H(12) (2) are also reported. Polyhedral expansion of 4,1,8-CoC(2)B(10) compounds affords a different isomer of the 14-vertex bimetallacarboranes, 1,14,2,9-Co(2)C(2)B(10), and three examples, 1,14-Cp(2)-1,14,2,9-closo-Co(2)C(2)B(10)H(12) (3), 1,14-Cp(2)-2,9-Me(2)-1,14,2,9-closo-Co(2)C(2)B(10)H(10) (4) and 1,14-(η-C(9)H(7))(2)-1,14,2,9-closo-Co(2)C(2)B(10)H(12) (5), are prepared and characterised. Patterns in (11)B NMR chemical shifts and in <δ(11)B>, the weighted average (11)B chemical shift, within and between related isomers of the 14-vertex compounds II and 1-5 are discussed. Compounds II, IV, 2, 4 and 5 were studied crystallographically, with cage C atom positions in these and related bicapped hexagonal antiprismatic 1,14,2,x-M(2)C(2)B(10) species analysed by the Vertex-to-Centroid Distance method.

4.
Dalton Trans ; 41(36): 10957-69, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22864940

RESUMO

Reduction of the tethered carborane 1,2-µ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) followed by metallation with {CpCo} or {(p-cymene)Ru} fragments affords both C,C'-dimethyl 4,1,2-MC(2)B(10) and 4,1,6-MC(2)B(10) species. DFT calculations indicate that the barriers to isomerisation of both 4-Cp-4,1,2-closo-CoC(2)B(10)H(12) and 4-(η-C(6)H(6))-4,1,2-closo-RuC(2)B(10)H(12) to their respective 4,1,6-isomers are too high for this to be the origin of the unexpected formation of 4,1,6-MC(2)B(10) products (in marked contrast to the related isomerisation of 1,2-closo-C(2)B(11)H(13) to 1,6-closo-C(2)B(11)H(13)), and, indeed, the 4,1,2-species are recovered unchanged from refluxing toluene. Equally, the DFT-calculated profile for the isomerisation of [7,8-nido-C(2)B(10)H(12)](2-) to [7,9-nido-C(2)B(10)H(12)](2-) suggests that the unexpected formation of 4,1,6-metallacarboranes is unlikely to result from isomerisation of a reduced (nido) carborane following desilylation. Instead, the source of the 4,1,6-MC(2)B(10) compounds is traced to desilylation of 1,2-µ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) by Li or Na prior to reduction. The supraicosahedral metallacarboranes 1,8-Me(2)-4-Cp-4,1,8-closo-CoC(2)B(10)H(10), 1,12-Me(2)-4-Cp-4,1,12-closo-CoC(2)B(10)H(10) and 1,12-Me(2)-4-(p-cymene)-4,1,12-closo-RuC(2)B(10)H(10) are also reported with all new species characterised both spectroscopically and crystallographically.

5.
Dalton Trans ; 39(22): 5286-300, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20440441

RESUMO

13-vertex indenyl cobaltacarboranes with 4,1,6-, 4,1,10- and 4,1,2-CoC(2)B(10) architectures have been synthesised by reduction of the corresponding closo carborane and metallation with an {(eta-C(9)H(7))Co} fragment. Variants of the 4,1,6-isomer were prepared with no, one and two methyl groups on cage C atoms, whilst 4,1,2-species were obtained both with two methyl groups and a trimethylene tether on the cage C atoms. Thermolysis of the 4,1,6-isomers yielded the corresponding 4,1,8-isomers, which in turn were converted to 4,1,12-isomers by thermolysis at higher temperatures. Alternatively relatively mild heating of the 4,1,10-isomer led to the 4,1,12-isomer directly. Products were characterised by mass spectrometry, (1)H and (11)B NMR spectroscopies and, in most cases, elemental analysis, and nine compounds were studied crystallographically. The 4,1,6-, 4,1,8-, 4,1,10- and 4,1,12- species have docosahedral cages whilst the 4,1,2-species are henicosahedral. In the structural studies attention focused on the orientation of the indenyl ligand with respect to the carborane ligand since this affords experimental information on the metal-cage bonding through the structural indenyl effect. There is a general tendency for the indenyl ligand to adopt orientations in which the ring junction C atoms lie trans to cage B atoms. In cases where the orientation is not compromised by the presence of a non-H substituent on the face of the carborane there is generally good agreement between the experimental orientation and that computed by DFT calculations for the related naphthalene ferracarboranes (eta-C(10)H(8))FeC(2)B(10)H(12). The presence of C-methyl substituents in the indenyl cobaltacarboranes tends to override this preference except in the case of 1,6-Me(2)-4-(eta-C(9)H(7))-4,1,6-closo-CoC(2)B(10)H(10) where the indenyl ligand instead is forced to incline away from the cage methyl groups. In DCM solution the 4,1,6-, 4,1,8-, 4,1,10- and 4,1,12- isomers of (eta-C(9)H(7))CoC(2)B(10)H(12) exhibit two, stepwise, 1-electron reductions assigned to Co(III)/Co(II)/Co(I) couples at less negative potentials than those of the corresponding Cp compounds. Moreover these reductions are easier for those isomers (4,1,6- and 4,1,10-) in which there are two cage C atoms in the carborane face to which the metal atom is bound. By spectroelectrochemical and EPR measurements it is concluded that the reductions of these indenyl cobaltacarboranes are largely metal-based.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA