Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 195(3): 559-574, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33106935

RESUMO

Many bee species are dietary specialists and restrict their pollen foraging to a subset of the available flowers. However, the reasons for specialization-and the reasons certain plant taxa support numerous specialists-are often unclear. Many bees specialize on the plant family Asteraceae, despite evidence its pollen is a poor food for non-specialists. Here, we studied six mason bee (Osmia) species, including three Asteraceae specialists, to test whether observed pollen-usage patterns reflect larval nutritional requirements, to investigate what aspects of Asteraceae pollen make it unsuitable for non-specialists, and to understand how Asteraceae specialists tolerate their seemingly low-quality diet. We reared larval bees on host and nonhost pollen and found that Asteraceae specialists could develop on nonhost provisions, but that other bees could not survive on Asteraceae provisions. These effects did not seem related to nutritional deficiencies, since Asteraceae provisions were not amino acid deficient, and we found no consistent differences in digestive efficiency among pollen types. However, Asteraceae specialists completed more foraging flights per larva, generally collected relatively larger provisions, and produced more frass (waste) than the other species, suggesting quantitative compensation for low food quality. Toxins, deficiencies in unmeasured nutrients, or aspects of pollen grain structure might explain poor survival of non-specialists on Asteraceae provisions. Our results suggest that floral host selection by specialist bees is not related to optimizing larval nutrition. We recommend further investigation of host-selection behaviour in adult bees and of pollen digestion in larvae to better understand the evolution of bee-flower associations.


Assuntos
Pólen , Especialização , Animais , Abelhas , Dieta , Flores , Larva
2.
Zookeys ; (691): 49-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200923

RESUMO

The Microgastrinae (Hymenoptera: Braconidae) from ten islands of the Canadian Arctic Archipelago (CAA) and Greenland were studied based on 2,183 specimens deposited in collections. We report a total of 33 species in six genera, more than doubling the totals previously known. Most of the species (75.7%) have a distribution restricted to the Nearctic, with nine of those (27.3%) confirmed to be High Arctic endemics and another 10 species considered very likely to be High Arctic endemics as well - accounting for all of those, more than half of all species found are endemic to the region. The most diverse genera were Cotesia (10 species), Glyptapanteles (9 species), and Microplitis (7 species), representing 78.8% of the overall species diversity in the region. The six most frequently collected species comprised 84.7% of all examined specimens. The flight period for Microgastrinae in the High Arctic encompasses only two months, with activity peaking during the first half of July, when almost 40% of all available specimens were collected, and then plummeting in the first half to the end of August. Microgastrinae wasps from the High Arctic are currently known to parasitize eight species within four families of Lepidoptera: three species of Noctuidae, two each of Lymantridae and Nymphalidae, and one species of Pterophoridae. However, that information is very preliminary, as only six of the 33 species of microgastrines currently have associated host data. An annotated checklist, including photographs for 24 of the 33 species, is provided, as well as a key to all Microgastrinae genera present in the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...