Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(7): 2046-2063, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38217537

RESUMO

Duckweeds span 36 species of free-floating aquatic organisms with body sizes ranging from 2 mm to 10 mm, where each plant body plan is reduced to a largely leaf-like structure. As an emerging crop, their fast growth rates offer potential for cultivation in closed systems. We describe a novel UK collection derived from low light (dLL) or high light (dHL) habitats, profiled for growth, photosynthesis, and photoprotection (non-photochemical quenching, NPQ) responses. Twenty-three accessions of three Lemna species and one Spirodela polyrhiza were grown under relatively low light (LL: 100 µmol m-2 s-1) and high light (HL: 350 µmol m-2 s-1) intensities. We observed broad within- and between-species level variation in photosynthesis acclimation. Duckweeds grown under HL exhibited a lower growth rate, biomass, chlorophyll, and quantum yield of photosynthesis. In HL compared with LL, carotenoid de-epoxidation state and NPQ were higher, whilst PSII efficiency (φPSII) and Chl a:b ratios were unchanged. The dLL plants showed relatively stronger acclimation to HL compared with dHL plants, especially Lemna japonica accessions. These achieved faster growth in HL with concurrent higher carotenoid levels and NPQ, and less degradation of chlorophyll. We conclude that these data support local adaptation to the light environment in duckweed affecting acclimation in controlled conditions.


Assuntos
Luz , Fotossíntese , Fotossíntese/fisiologia , Clorofila/metabolismo , Adaptação Fisiológica , Biomassa , Carotenoides/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
2.
New Phytol ; 239(5): 1622-1636, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430457

RESUMO

Global nocturnal temperatures are rising more rapidly than daytime temperatures and have a large effect on crop productivity. In particular, stomatal conductance at night (gsn ) is surprisingly poorly understood and has not been investigated despite constituting a significant proportion of overall canopy water loss. Here, we present the results of 3 yr of field data using 12 spring Triticum aestivum genotypes which were grown in NW Mexico and subjected to an artificial increase in night-time temperatures of 2°C. Under nocturnal heating, grain yields decreased (1.9% per 1°C) without significant changes in daytime leaf-level physiological responses. Under warmer nights, there were significant differences in the magnitude and decrease in gsn , values of which were between 9 and 33% of daytime rates while respiration appeared to acclimate to higher temperatures. Decreases in grain yield were genotype-specific; genotypes categorised as heat tolerant demonstrated some of the greatest declines in yield in response to warmer nights. We conclude the essential components of nocturnal heat tolerance in wheat are uncoupled from resilience to daytime temperatures, raising fundamental questions for physiological breeding. Furthermore, this study discusses key physiological traits such as pollen viability, root depth and irrigation type may also play a role in genotype-specific nocturnal heat tolerance.


Assuntos
Grão Comestível , Melhoramento Vegetal , Grão Comestível/genética , Folhas de Planta/fisiologia , Temperatura , Temperatura Alta
3.
J Exp Bot ; 74(17): 5181-5197, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37347829

RESUMO

Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.


Assuntos
Oryza , Termotolerância , Oryza/fisiologia , Termotolerância/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fotossíntese/genética , Clorofila
4.
J Exp Bot ; 74(1): 72-90, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264277

RESUMO

Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.


Assuntos
Grão Comestível , Triticum , Triticum/fisiologia , Fenótipo , Grão Comestível/fisiologia , Fotossíntese/fisiologia , Folhas de Planta
5.
Front Plant Sci ; 12: 780180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925424

RESUMO

Stomata are integral to plant performance, enabling the exchange of gases between the atmosphere and the plant. The anatomy of stomata influences conductance properties with the maximal conductance rate, g smax, calculated from density and size. However, current calculations of stomatal dimensions are performed manually, which are time-consuming and error prone. Here, we show how automated morphometry from leaf impressions can predict a functional property: the anatomical gsmax. A deep learning network was derived to preserve stomatal morphometry via semantic segmentation. This forms part of an automated pipeline to measure stomata traits for the estimation of anatomical gsmax. The proposed pipeline achieves accuracy of 100% for the distinction (wheat vs. poplar) and detection of stomata in both datasets. The automated deep learning-based method gave estimates for gsmax within 3.8 and 1.9% of those values manually calculated from an expert for a wheat and poplar dataset, respectively. Semantic segmentation provides a rapid and repeatable method for the estimation of anatomical gsmax from microscopic images of leaf impressions. This advanced method provides a step toward reducing the bottleneck associated with plant phenotyping approaches and will provide a rapid method to assess gas fluxes in plants based on stomata morphometry.

6.
New Phytol ; 232(1): 162-175, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34143507

RESUMO

Nocturnal stomatal conductance (gsn ) represents a significant source of water loss, with implications for metabolism, thermal regulation and water-use efficiency. With increasing nocturnal temperatures due to climate change, it is vital to identify and understand variation in the magnitude and responses of gsn in major crops. We assessed interspecific variation in gsn and daytime stomatal conductance (gs ) in a wild relative and modern spring wheat genotype. To investigate intraspecific variation, we grew six modern wheat genotypes and two landraces under well watered, simulated field conditions. For the diurnal data, higher gsn in the wild relative was associated with significantly lower nocturnal respiration and higher daytime CO2 assimilation while both species exhibited declines in gsn post-dusk and pre-dawn. Lifetime gsn achieved rates of 5.7-18.9% of gs . Magnitude of gsn was genotype specific 'and positively correlated with gs . gsn and gs were significantly higher on the adaxial surface. No relationship was determined between harvest characteristics, stomatal morphology and gsn , while cuticular conductance was genotype specific. Finally, for the majority of genotypes, gsn declined with age. Here we present the discovery that variation in gsn occurs across developmental, morphological and temporal scales in nonstressed wheat, presenting opportunities for exploiting intrinsic variation under heat or water stressed conditions.


Assuntos
Estômatos de Plantas , Triticum , Genótipo , Folhas de Planta , Estômatos de Plantas/genética , Triticum/genética , Água
7.
AoB Plants ; 13(1): plaa067, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33442465

RESUMO

Under conditions of high transpiration and low soil water availability, the demand for water can exceed supply causing a reduction in water potential and a loss of cell turgor (wilting). Regulation of stomatal aperture mediates the loss of water vapour (g s), which in turn is dependent in part on the anatomical characteristics of stomatal density (SD) and stomatal size (SS). Anisohydric sugar beet (Beta vulgaris) is atypical, exhibiting wilting under high soil water availability. Spinach (Spinacia oleracea) belongs to the same family Chenopodiaceae s.s., but demonstrates a more typical wilting response. To investigate the role of stomatal dynamics in such behaviours, sugar beet and spinach leaves were exposed to step-changes in photosynthetic photon flux density (PPFD) from 250 to 2500 µmol m-2 s-1. Using a four log-logistic function, the maximum rate of stomatal opening was estimated. Concurrent measurements of SD and SS were taken for both species. While sugar beet coupled faster opening with smaller, more numerous stomata, spinach showed the converse. After exposure to drought, maximum g s was reduced in sugar beet but still achieved a similar speed of opening. It is concluded that sugar beet stomata respond rapidly to changes in PPFD with a high rate and magnitude of opening under both non-droughted and droughted conditions. Such a response may contribute to wilting, even under high soil water availability, but enables photosynthesis to be better coupled with increasing PPFD.

8.
New Phytol ; 228(6): 1767-1780, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910841

RESUMO

The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environments. Leaf photosynthetic traits underpin the rate of production of biomass and yield and have not been systematically explored in the wheat relatives. This paper identifies and quantifies the phenotypic variation in photosynthetic, stomatal, and morphological traits in up to 88 wheat wild relative accessions across five genera. Both steady-state measurements and dynamic responses to step changes in light intensity are assessed. A 2.3-fold variation for flag leaf light and CO2 -saturated rates of photosynthesis Amax was observed. Many accessions showing higher and more variable Amax , maximum rates of carboxylation, electron transport, and Rubisco activity when compared with modern genotypes. Variation in dynamic traits was also significant; with distinct genus-specific trends in rates of induction of nonphotochemical quenching and rate of stomatal opening. We conclude that utilization of wild relatives for improvement of photosynthesis is supported by the existence of a high degree of natural variation in key traits and should consider not only genus-level properties but variation between individual accessions.


Assuntos
Melhoramento Vegetal , Triticum , Transporte de Elétrons , Fotossíntese , Folhas de Planta/genética , Triticum/genética
9.
Plant J ; 104(3): 839-855, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32777163

RESUMO

A key target for the improvement of Oryza sativa (rice) is the development of heat-tolerant varieties. This necessitates the development of high-throughput methodologies for the screening of heat tolerance. Progress has been made to this end via visual scoring and chlorophyll fluorescence; however, these approaches demand large infrastructural investments to expose large populations of adult plants to heat stress. To address this bottleneck, we investigated the response of the maximum quantum efficiency of photosystem II (PSII) to rapidly increasing temperatures in excised leaf segments of juvenile rice plants. Segmented models explained the majority of the observed variation in response. Coefficients from these models, i.e. critical temperature (Tcrit ) and the initial response (m1 ), were evaluated for their usability for forecasting adult heat tolerance, measured as the vegetative heat tolerance of adult rice plants through visual (stay-green) and chlorophyll fluorescence (ɸPSII) approaches. We detected substantial variation in heat tolerance of a randomly selected set of indica rice varieties. Both Tcrit and m1 were associated with measured heat tolerance in adult plants, highlighting their usability as high-throughput proxies. Variation in heat tolerance was associated with daytime respiration but not with photosynthetic capacity, highlighting a role for the non-photorespiratory release of CO2 in heat tolerance. To date, this represents the first published instance of genetic variation in these key gas-exchange traits being quantified in response to heat stress in a diverse set of rice accessions. These results outline an efficient strategy for screening heat tolerance and accentuate the need to focus on reduced rates of respiration to improve heat tolerance in rice.


Assuntos
Variação Genética , Resposta ao Choque Térmico/genética , Oryza/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Resposta ao Choque Térmico/fisiologia , Modelos Biológicos , Oryza/genética , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/fisiologia , Temperatura
10.
Front Plant Sci ; 11: 462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499791

RESUMO

Advancements in availability and specificity of light-emitting diodes (LEDs) have facilitated trait modification of high-value edible herbs and vegetables through the fine manipulation of spectra. Coriander (Coriandrum sativum L.) is a culinary herb, known for its fresh, citrusy aroma, and high economic value. Studies into the impact of light intensity and spectrum on C. sativum physiology, morphology, and aroma are limited. Using a nasal impact frequency panel, a selection of key compounds associated with the characteristic aroma of coriander was identified. Significant differences (P < 0.05) were observed in the concentration of these aromatics between plants grown in a controlled environment chamber under the same photosynthetic photon flux density (PPFD) but custom spectra: red (100%), blue (100%), red + blue (RB, 50% equal contribution), or red + green + blue (RGB, 35.8% red: 26.4% green: 37.8% blue) wavelengths. In general, the concentration of aromatics increased with increasing numbers of wavelengths emitted alongside selective changes, e.g., the greatest increase in coriander-defining E-(2)-decenal occurred under the RGB spectrum. This change in aroma profile was accompanied by significant differences (P < 0.05) in light saturated photosynthetic CO2 assimilation, water-use efficiency (Wi), and morphology. While plants grown under red wavelengths achieved the greatest leaf area, RB spectrum plants were shortest and had the highest leaf:shoot ratio. Therefore, this work evidences a trade-off between sellable commercial morphologies with a weaker, less desirable aroma or a less desirable morphology with more intense coriander-like aromas. When supplemental trichromatic LEDs were used in a commercial glasshouse, the majority of compounds, with the exception of linalool, also increased showing that even as a supplement additional wavelength can modify the aromatic profile increasing its complexity. Lower levels of linalool suggest these plants may be more susceptible to biotic stress such as herbivory. Finally, the concentration of coriander-defining aromatics E-(2)-decenal and E-(2)-hexenal was significantly higher in supermarket pre-packaged coriander leaves implying that concentrations of aromatics increase after excision. In summary, spectra can be used to co-manipulate aroma profile and plant form with increasing spectral complexity leading to greater aromatic complexity and intensity. We suggest that increasing spectral complexity progressively stimulates signaling pathways giving rise to valuable economic traits.

11.
Front Plant Sci ; 11: 501, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411169

RESUMO

The plastid terminal oxidase (PTOX) - an interfacial diiron carboxylate protein found in the thylakoid membranes of chloroplasts - oxidizes plastoquinol and reduces molecular oxygen to water. It is believed to play a physiologically important role in the response of some plant species to light and salt (NaCl) stress by diverting excess electrons to oxygen thereby protecting photosystem II (PSII) from photodamage. PTOX is therefore a candidate for engineering stress tolerance in crop plants. Previously, we used chloroplast transformation technology to over express PTOX1 from the green alga Chlamydomonas reinhardtii in tobacco (generating line Nt-PTOX-OE). Contrary to expectation, growth of Nt-PTOX-OE plants was more sensitive to light stress. Here we have examined in detail the effects of PTOX1 on photosynthesis in Nt-PTOX-OE tobacco plants grown at two different light intensities. Under 'low light' (50 µmol photons m-2 s-1) conditions, Nt-PTOX-OE and WT plants showed similar photosynthetic activities. In contrast, under 'high light' (125 µmol photons m-2 s-1) conditions, Nt-PTOX-OE showed less PSII activity than WT while photosystem I (PSI) activity was unaffected. Nt-PTOX-OE grown under high light also failed to increase the chlorophyll a/b ratio and the maximum rate of CO2 assimilation compared to low-light grown plants, suggesting a defect in acclimation. In contrast, Nt-PTOX-OE plants showed much better germination, root length, and shoot biomass accumulation than WT when exposed to high levels of NaCl and showed better recovery and less chlorophyll bleaching after NaCl stress when grown hydroponically. Overall, our results strengthen the link between PTOX and the resistance of plants to salt stress.

13.
Plant Methods ; 15: 109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31548849

RESUMO

BACKGROUND: As yields of major crops such as wheat (T. aestivum) have begun to plateau in recent years, there is growing pressure to efficiently phenotype large populations for traits associated with genetic advancement in yield. Photosynthesis encompasses a range of steady state and dynamic traits that are key targets for raising Radiation Use Efficiency (RUE), biomass production and grain yield in crops. Traditional methodologies to assess the full range of responses of photosynthesis, such a leaf gas exchange, are slow and limited to one leaf (or part of a leaf) per instrument. Due to constraints imposed by time, equipment and plant size, photosynthetic data is often collected at one or two phenological stages and in response to limited environmental conditions. RESULTS: Here we describe a high throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in excised leaves under controlled gaseous conditions. When measured throughout the day, no significant differences (P > 0.081) were observed between the responses of excised and intact leaves. Using excised leaves, the response of three cultivars of T. aestivum to a user-defined dynamic lighting regime was examined. Cultivar specific differences were observed for maximum PSII efficiency (F v'/F m'-P < 0.01) and PSII operating efficiency (F q'/F m'-P = 0.04) under both low and high light. In addition, the rate of induction and relaxation of non-photochemical quenching (NPQ) was also cultivar specific. A specialised imaging chamber was designed and built in-house to maintain gaseous conditions around excised leaf sections. The purpose of this is to manipulate electron sinks such as photorespiration. The stability of carbon dioxide (CO2) and oxygen (O2) was monitored inside the chambers and found to be within ± 4.5% and ± 1% of the mean respectively. To test the chamber, T. aestivum 'Pavon76' leaf sections were measured under at 20 and 200 mmol mol-1 O2 and ambient [CO2] during a light response curve. The F v'/F m'was significantly higher (P < 0.05) under low [O2] for the majority of light intensities while values of NPQ and the proportion of open PSII reaction centers (qP) were significantly lower under > 130 µmol m-2 s-1 photosynthetic photon flux density (PPFD). CONCLUSIONS: Here we demonstrate the development of a high-throughput (> 500 samples day-1) method for phenotyping photosynthetic and photo-protective parameters in a dynamic light environment. The technique exploits chlorophyll fluorescence imaging in a specifically designed chamber, enabling controlled gaseous environment around leaf sections. In addition, we have demonstrated that leaf sections do not different from intact plant material even > 3 h after sampling, thus enabling transportation of material of interest from the field to this laboratory based platform. The methodologies described here allow rapid, custom screening of field material for variation in photosynthetic processes.

14.
Front Plant Sci ; 9: 1993, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30733728

RESUMO

The genus Aegilops contains a diverse collection of wild species exhibiting variation in geographical distribution, ecological adaptation, ploidy and genome organization. Aegilops is the most closely related genus to Triticum which includes cultivated wheat, a globally important crop that has a limited gene pool for modern breeding. Aegilops species are a potential future resource for wheat breeding for traits, such as adaptation to different ecological conditions and pest and disease resistance. This study describes the development and application of the first high-throughput genotyping platform specifically designed for screening wheat relative species. The platform was used to screen multiple accessions representing all species in the genus Aegilops. Firstly, the data was demonstrated to be useful for screening diversity and examining relationships within and between Aegilops species. Secondly, markers able to characterize and track introgressions from Aegilops species in hexaploid wheat were identified and validated using two different approaches.

15.
Plant Physiol ; 175(1): 134-145, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28754840

RESUMO

In this study, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing the Rieske FeS protein (PetC), a component of the cytochrome b6f (cyt b6f) complex. Increasing the levels of this protein resulted in concomitant increases in the levels of cyt f (PetA) and cyt b6 (PetB), core proteins of the cyt b6f complex. Interestingly, an increase in the levels of proteins in both the photosystem I (PSI) and PSII complexes also was seen in the Rieske FeS overexpression plants. Although the mechanisms leading to these changes remain to be identified, the transgenic plants presented here provide novel tools to explore this. Importantly, overexpression of the Rieske FeS protein resulted in substantial and significant impacts on the quantum efficiency of PSI and PSII, electron transport, biomass, and seed yield in Arabidopsis plants. These results demonstrate the potential for manipulating electron transport processes to increase crop productivity.


Assuntos
Arabidopsis/metabolismo , Biomassa , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons/genética , Fotossíntese , Arabidopsis/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Nicotiana/genética
16.
J Exp Bot ; 68(9): 2099-2110, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575474

RESUMO

The pleasant green appearance of plants, caused by their reflectance of wavelengths in the 500-600 nm range, might give the impression that green light is of minor importance in biology. This view persists to an extent. However, there is strong evidence that these wavelengths are not only absorbed but that they also drive and regulate physiological responses and anatomical traits in plants. This review details the existing evidence of essential roles for green wavelengths in plant biology. Absorption of green light is used to stimulate photosynthesis deep within the leaf and canopy profile, contributing to carbon gain and likely crop yield. In addition, green light also contributes to the array of signalling information available to leaves, resulting in developmental adaptation and immediate physiological responses. Within shaded canopies this enables optimization of resource-use efficiency and acclimation of photosynthesis to available irradiance. In this review, we suggest that plants may use these wavelengths not just to optimize stomatal aperture but also to fine-tune whole-canopy efficiency. We conclude that all roles for green light make a significant contribution to plant productivity and resource-use efficiency. We also outline the case for using green wavelengths in applied settings such as crop cultivation in LED-based agriculture and horticulture.


Assuntos
Luz , Fotossíntese , Fenômenos Fisiológicos Vegetais , Aclimatação , Folhas de Planta/fisiologia
18.
New Phytol ; 211(4): 1209-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27214387

RESUMO

Both photosynthesis (A) and stomatal conductance (gs ) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in noncoordination between A and gs in dynamic light environments. Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and gs to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated. The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and gs in most of the species. The shape of the guard cells influenced the rapidity of response and the overall gs values achieved, with different impacts on A and Wi . The rapidity of gs in dumbbell-shaped guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than anatomy were more important for kinetics. Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use.


Assuntos
Luz , Fotossíntese/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Água/fisiologia , Dióxido de Carbono/metabolismo , Cinética , Fótons , Estômatos de Plantas/anatomia & histologia , Especificidade da Espécie , Fatores de Tempo
19.
J Exp Bot ; 66(13): 4075-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956882

RESUMO

Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12-19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields.


Assuntos
Biomassa , Ciclo do Carbono/genética , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Genes de Plantas , Nicotiana/crescimento & desenvolvimento , Fotossíntese/genética , Clorofila/metabolismo , Ritmo Circadiano/genética , Fluorescência , Frutose-Bifosfato Aldolase/metabolismo , Luz , Monoéster Fosfórico Hidrolases/metabolismo , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/metabolismo , Plântula/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/efeitos da radiação , Transformação Genética
20.
Philos Trans R Soc Lond B Biol Sci ; 369(1640): 20130234, 2014 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-24591719

RESUMO

The rapid induction of the bundle sheath cell (BSC)-specific expression of ASCORBATE PEROXIDASE2 (APX2) in high light (HL)-exposed leaves of Arabidopsis thaliana is, in part, regulated by the hormone abscisic acid (ABA) produced by vascular parenchyma cells. In this study, we provide more details of the ABA signalling that regulates APX2 expression and consider its importance in the photosynthetic responses of BSCs and whole leaves. This was done using a combination of analyses of gene expression and chlorophyll a fluorescence of both leaves and individual BSCs and mesophyll cells. The regulation of APX2 expression occurs by the combination of the protein kinase SnRK2.6 (OST1):protein phosphatase 2C ABI2 and a Gα (GPA1)-regulated signalling pathway. The use of an ost1-1/gpa1-4 mutant established that these signalling pathways are distinct but interact to regulate APX2. In HL-exposed leaves, BSC chloroplasts were more susceptible to photoinhibition than those of mesophyll cells. The activity of the ABA-signalling network determined the degree of susceptibility of BSCs to photoinhibition by influencing non-photochemical quenching. By contrast, in HL-exposed whole leaves, ABA signalling did not have any major influence on their transcriptomes nor on their susceptibility to photoinhibition, except where guard cell responses were observed.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Luz , Folhas de Planta/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Primers do DNA/genética , Fluorescência , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Genótipo , Células do Mesofilo/metabolismo , Folhas de Planta/citologia , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...