Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(43): 16628-16640, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37857373

RESUMO

Anthropogenic greenhouse gas emissions from power plants can be limited using postcombustion carbon dioxide capture by amine-based solvents. However, sustainable strategies for the simultaneous utilization and storage of carbon dioxide are limited. In this study, membrane distillation-crystallization is used to facilitate the controllable production of carbonate minerals directly from carbon dioxide-loaded amine solutions and waste materials such as fly ash residues and waste brines from desalination. To identify the most suitable conditions for carbon mineralization, we vary the membrane type, operating conditions, and system configuration. Feed solutions with 30 wt % monoethanolamine are loaded with 5-15% CO2 and heated to 40-50 °C before being dosed with 0.18 M Ca2+ and Mg2+. Membranes with lower surface energy and greater roughness are found to more rapidly promote mineralization due to up to 20% greater vapor flux. Lower operating temperature improves membrane wetting tolerance by 96.2% but simultaneously reduces crystal growth rate by 48.3%. Sweeping gas membrane distillation demonstrates a 71.6% reduction in the mineralization rate and a marginal improvement (37.5%) on membrane wetting tolerance. Mineral identity and growth characteristics are presented, and the analysis is extended to explore the potential improvements for carbon mineralization as well as the feasibility of future implementation.


Assuntos
Dióxido de Carbono , Destilação , Cristalização , Dióxido de Carbono/química , Solventes/química , Aminas
2.
NPJ Microgravity ; 9(1): 66, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587131

RESUMO

The undesirable, yet inevitable, presence of bacterial biofilms in spacecraft poses a risk to the proper functioning of systems and to astronauts' health. To mitigate the risks that arise from them, it is important to understand biofilms' behavior in microgravity. As part of the Space Biofilms project, biofilms of Pseudomonas aeruginosa were grown in spaceflight over material surfaces. Stainless Steel 316 (SS316) and passivated SS316 were tested for their relevance as spaceflight hardware components, while a lubricant impregnated surface (LIS) was tested as potential biofilm control strategy. The morphology and gene expression of biofilms were characterized. Biofilms in microgravity are less robust than on Earth. LIS strongly inhibits biofilm formation compared to SS. Furthermore, this effect is even greater in spaceflight than on Earth, making LIS a promising option for spacecraft use. Transcriptomic profiles for the different conditions are presented, and potential mechanisms of biofilm reduction on LIS are discussed.

3.
J Chem Phys ; 158(13): 134721, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031132

RESUMO

A recently discovered phenomenon in which crystalline structures grown from evaporating drops of saline water self-eject from superhydrophobic materials has introduced new possibilities for the design of anti-fouling materials and sustainable processes. Some of these possibilities include evaporative heat exchange systems using drops of saline water and new strategies for handling/processing waste brines. However, the practical limits of this effect using realistic, non-ideal source waters have yet to be explored. Here, we explore how the presence of various model aquatic contaminants (colloids, surfactants, and calcium salt) influences the self-ejection phenomena. Counterintuitively, we find that the addition of "contaminant" chemistries can enable ejection under conditions where ejection was not observed for waters containing only sodium chloride salt (e.g., from smooth hydrophobic surfaces), and that increased concentrations of both surfactants and colloids lead to longer ejection lengths. This result can be attributed to decreased crystallization nucleation time caused by the presence of other species in water.

4.
Sci Adv ; 7(18)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33910891

RESUMO

Mineral or crystal fouling (the accumulation of precipitants on a material and damage associated with the same) is a pervasive problem in water treatment, thermoelectric power production, and numerous industrial processes. Growing efforts have focused on materials engineering strategies (e.g., superhydrophobicity) to prevent fouling. Here, we present a curious phenomenon in which crystals self-eject from heated, nanotextured superhydrophobic materials during evaporation of saline water drops. These crystal structures (crystal critters) have exceedingly minimal contact with the substrate and thus pre-empt crystal fouling. This unusual phenomenon is caused by cooperative effects of crystallization, evaporative flows, and nanoscale effects. The temperature dependence of the critter effect can be predicted using principles of mass conservation, and we demonstrate that self-propulsion can be generated via temperature gradients, which promote asymmetric growth. The insights on confinement-driven evaporative crystallization can be applied for antifouling by self-ejection of mineral foulants, for drop-based fluidic machines, or even for self-propulsion.

5.
Langmuir ; 36(40): 11732-11741, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32937070

RESUMO

Evaporative deposits from drops are widely studied due to their numerous applications in low-effort self-assembly, including for inkjet printing, microscale separations, and sensing/diagnostics. This phenomenon has been broadly explored for drops containing suspended colloidal particles but has been less quantified for drops with dissolved solutes. When a drop of solute/solvent mixture is evaporated on a substrate, nonvolatile solutes become supersaturated as the solvent evaporates, which then leads to crystal nucleation at the substrate-drop contact line. Emerging crystals alter the local wettability and fundamentally alter the dynamics of evaporation, which, in turn, influences the resultant evaporative deposit. Here we investigate the role of interactions between the substrate, crystals, and solution by comparing the evaporative deposition of three different salts as solutes against an evaporating colloidal solution. We show that nucleation effects can cause crystalline deposits to have a temperature relationship that is opposite to that of colloidal deposits and demonstrate how a balance between the contact-line pinning force and nucleation controls the deposit size.

6.
Langmuir ; 35(32): 10484-10490, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31260320

RESUMO

Spiral motifs are pervasive in nature, art, and technology due to their functional property of providing compact length. Nature is particularly adept at spiral patterning, and yet, the spirals observed in seashells, hurricanes, rams' horns, flower petals, etc. all evolve via disparate physical mechanisms. Here, we present a mechanism for the self-guided formation of spirals from evaporating saline drops via a coupling of crystallization and contact line dynamics. These patterns are in contrast to commonly observed patterns from evaporation of colloidal drops, which are discrete (rings, concentric rings) or continuous (clumps, uniform deposits) depending on the particle shape, contact line dynamics, and evaporation rate. Unlike the typical process of drop evaporation where the contact line moves radially inward, here, a thin film pinned by a ring of crystals ruptures radially outward. This motion is accompanied by a nonuniform pinning of the contact line due to crystallization, which generates a continuous propagation of pinning and depinning events to form a spiral. By comparing the relevant timescales of evaporation and diffusion, we show that a single dimensionless number can predict the occurrence of these patterns. These insights on self-guided crystallization of spirals could be used to create compact length templates.

7.
Acta Astronaut ; 148: 294-300, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30449911

RESUMO

Biofilm growth has been observed in Soviet/Russian (Salyuts and Mir), American (Skylab), and International (ISS) Space Stations, sometimes jeopardizing key equipment like spacesuits, water recycling units, radiators, and navigation windows. Biofilm formation also increases the risk of human illnesses and therefore needs to be well understood to enable safe, long-duration, human space missions. Here, the design of a NASA-supported biofilm in space project is reported. This new project aims to characterize biofilm inside the International Space Station in a controlled fashion, assessing changes in mass, thickness, and morphology. The space-based experiment also aims at elucidating the biomechanical and transcriptomic mechanisms involved in the formation of a "column-and-canopy" biofilm architecture that has previously been observed in space. To search for potential solutions, different materials and surface topologies will be used as the substrata for microbial growth. The adhesion of bacteria to surfaces and therefore the initial biofilm formation is strongly governed by topographical surface features of about the bacterial scale. Thus, using Direct Laser-Interference Patterning, some material coupons will have surface patterns with periodicities equal, above or below the size of bacteria. Additionally, a novel lubricant-impregnated surface will be assessed for potential Earth and spaceflight anti-biofilm applications. This paper describes the current experiment design including microbial strains and substrata materials and nanotopographies being considered, constraints and limitations that arise from performing experiments in space, and the next steps needed to mature the design to be spaceflight-ready.

8.
Langmuir ; 34(41): 12350-12358, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29609465

RESUMO

Mineral-fouling induced corrosion and deterioration of marine vessels, aircraft, and coastal structures is due in part from structural intrusion of crystals grown from ocean-generated saline drops. As such, much work has explored surface treatments that induce hydrophobicity or introduce barriers for antifouling and corrosion prevention; however, the efficacy of these strategies will be altered by the underlying substrate texture. Here, we study the behavior of evaporating saline drops on superhydrophobic and liquid-impregnated surfaces as a function of surface texture. On superhydrophobic surfaces, four disparate regimes (which are not observed for particle-laden drops) emerge as a function of the substrate solid fraction: Cassie-pinning, Cassie-gliding, Cassie-Wenzel transition, and Wenzel. These regimes control the morphology of the resultant crystal deposits. In contrast to the superhydrophobic surfaces, spreading liquid-impregnated surfaces demonstrate minimal influence of solid fraction on evaporative crystallization. The area, area localization, timescale of evaporation, and deposit morphology are all normalized by the presence of the lubricating layer, thus introducing an efficient method of eliminating crystal "coffee rings" as well as reducing the potential for fouling and corrosion.

9.
Soft Matter ; 13(9): 1780-1787, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177017

RESUMO

Amyloidogenesis of proteins is of wide interest because amyloid structures are associated with many diseases, including Alzheimer's and type II diabetes. Dozens of different proteins of various sizes are known to form amyloid fibrils. While there are numerous studies on the fibrillization of insulin induced by various perturbations, shearing at fluid interfaces has not received as much attention. Here, we present a study of human insulin fibrillization at room temperature using a deep-channel surface viscometer. The hydrodynamics of the bulk flow equilibrates in just over a minute, but the proteins at the air-water interface exhibit a very slow development during which the surface (excess) shear viscosity deduced from a Newtonian surface model increases slightly over a period of a day and a half. Then, there is a very rapid increase in the surface shear viscosity to effectively unbounded levels as the interface becomes immobilized. Atomic force microscopy shows that fibrils appear at the interface after it becomes immobilized. Fibrillization in the bulk does not occur until much later. This has been verified by concurrent atomic force microscopy and circular dichroism spectroscopy of samples from the bulk. The immobilized interface has zero in-plane shear rate, however due to the bulk flow, there is an increase in the strength of the normal component of the shear rate at the interface, implicating this component of shear in the fibrillization process ultimately resulting in a thick weave of fibrils on the interface. Real-time detection of fibrillization via interfacial rheology may find utility in other studies of proteins at sheared interfaces.

10.
Soft Matter ; 12(14): 3461-7, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26956731

RESUMO

Agitation of protein is known to induce deleterious effects on protein stability and structure, with extreme agitation sometimes resulting in complete aggregation into amyloid fibrils. Many mechanisms have been proposed to explain how protein becomes unstable when subjected to flow, including alignment of protein species, shear-induced unfolding, simple mixing, or fragmentation of existing fibrils to create new seeds. Here a shearing flow was imposed on a solution of monomeric human insulin via a rotating Couette device with a small hydrophobic fluid interface. The results indicate that even very low levels of shear are capable of accelerating amyloid fibril formation. Simulations of the flow suggest that the shear enhances fibrillization kinetics when flow inertia is non-negligible and the resulting meridional circulation allows for advection of bulk protein to the hydrophobic interface.


Assuntos
Amiloide/química , Hidrodinâmica , Insulina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas
11.
J Phys Chem B ; 119(33): 10426-33, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26225416

RESUMO

A diverse range of proteins can assemble into amyloid fibrils, a process that generally results in a loss of function and an increase in toxicity. The occurrence and rate of conversion is strongly dependent on several factors including molecular structure and exposure to hydrodynamic forces. To investigate the origins of shear-induced enhancement in the rate of fibrillization, a stable rotating Couette flow was used to evaluate the kinetics of amyloid formation under uniform shear for two similar insulin species (human and bovine) that demonstrate unique fibrillization kinetics. The presence of shear-induced nuclei predicted by previous studies is supported by observations of a lag between the consumption of soluble insulin and the precipitation of amyloid aggregates. The apparent fibrillization rate generally increases with shear. However, a two-parameter kinetic model revealed that the nucleation rate has a maximum value at intermediate shear rates. The fibril elongation rate increases monotonically with shear and is similar for both insulin variants, suggesting that increased elongation rates are related to mixing. Differences between human and bovine insulin kinetics under shear are attributable to the nucleation step.


Assuntos
Amiloide/química , Insulina/química , Multimerização Proteica , Resistência ao Cisalhamento , Animais , Bovinos , Humanos , Hidrodinâmica , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína
12.
Environ Toxicol Chem ; 34(7): 1472-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25727029

RESUMO

Trenbolone acetate metabolites are endocrine-active contaminants discharged into the aquatic environment in runoff from agricultural fields, rangelands, and concentrated animal feeding operations. To investigate the environmental fate of these compounds and their biotransformation mechanisms, the authors used inocula from a variety of different water sources and dosed biologically active microcosms with approximately 1400 ng/L of trenbolone acetate metabolites, including 17ß-trenbolone, trendione, and 17α-trenbolone. To investigate aerobic biotransformation rates and interconversions between known trenbolone acetate metabolites, gas chromatography-tandem mass spectrometry was used to measure concentrations and assess product distributions as a function of time. High-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to characterize novel transformation products and potential transformation pathways. Kinetic analysis yields observed half-lives of approximately 0.9 d, 1.3 d, and 2.2 d for 17ß-trenbolone, trendione, and 17α-trenbolone, respectively, at 20 °C, although colder conditions increased half-lives to 8.5 d and biphasic transformation was observed. Relative to reported faster attenuation rates in soils, trenbolone acetate metabolites are likely more persistent in aqueous systems. Product distributions indicate an enzymatic preference for biotransformation between trendione and 17ß-trenbolone. The LC-MS/MS characterization indicates dehydrogenation products as the major detectable products and demonstrates that major structural elements responsible for bioactivity in steroids are likely retained during biotransformation.


Assuntos
Anabolizantes/metabolismo , Espectrometria de Massas em Tandem , Acetato de Trembolona/análise , Poluentes Químicos da Água/análise , Anabolizantes/análise , Ração Animal , Animais , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Meia-Vida , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Acetato de Trembolona/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...