Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1865(5): 129845, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33476744

RESUMO

BACKGROUND: Mitochondrial fission counterbalances fusion to maintain organelle morphology, but its role during development remains poorly characterized. Mammalian spermatogenesis is a complex developmental process involving several drastic changes to mitochondrial shape and organization. Mitochondria are generally small and spherical in spermatogonia, elongate during meiosis, and fragment in haploid round spermatids. Near the end of spermatid maturation, small mitochondrial spheres line the axoneme, elongate, and tightly wrap around the midpiece to form the mitochondrial sheath, which is critical for fueling flagellar movements. It remains unclear how these changes in mitochondrial morphology are regulated and how they affect sperm development. METHODS: We used genetic ablation of Mff (mitochondrial fission factor) in mice to investigate the role of mitochondrial fission during mammalian spermatogenesis. RESULTS: Our analysis indicates that Mff is required for mitochondrial fragmentation in haploid round spermatids and for organizing mitochondria in the midpiece in elongating spermatids. In Mff mutant mice, round spermatids have aberrantly elongated mitochondria that often show central constrictions, suggestive of failed fission events. In elongating spermatids and spermatozoa, mitochondrial sheaths are disjointed, containing swollen mitochondria with large gaps between organelles. These mitochondrial abnormalities in Mff mutant sperm are associated with reduced respiratory chain Complex IV activity, aberrant sperm morphology and motility, and reduced fertility. CONCLUSIONS: Mff is required for organization of the mitochondrial sheath in mouse sperm. GENERAL SIGNIFICANCE: Mitochondrial fission plays an important role in regulating mitochondrial organization during a complex developmental process.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Espermátides/metabolismo , Animais , Feminino , Fertilização in vitro , Masculino , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Motilidade dos Espermatozoides , Espermátides/citologia , Espermatogênese
2.
Autophagy ; 17(9): 2363-2383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33021864

RESUMO

Our previous studies reveal a mechanism for lipid droplet (LD)-mediated proteostasis in the endoplasmic reticulum (ER) whereby unfolded proteins that accumulate in the ER in response to lipid imbalance-induced ER stress are removed by LDs and degraded by microlipophagy (µLP), autophagosome-independent LD uptake into the vacuole (the yeast lysosome). Here, we show that dithiothreitol- or tunicamycin-induced ER stress also induces µLP and identify an unexpected role for vacuolar membrane dynamics in this process. All stressors studied induce vacuolar fragmentation prior to µLP. Moreover, during µLP, fragmented vacuoles fuse to form cup-shaped structures that encapsulate and ultimately take up LDs. Our studies also indicate that proteins of the endosome sorting complexes required for transport (ESCRT) are upregulated, required for µLP, and recruited to LDs, vacuolar membranes, and sites of vacuolar membrane scission during µLP. We identify possible target proteins for LD-mediated ER proteostasis. Our live-cell imaging studies reveal that one potential target (Nup159) localizes to punctate structures that colocalizes with LDs 1) during movement from ER membranes to the cytosol, 2) during microautophagic uptake into vacuoles, and 3) within the vacuolar lumen. Finally, we find that mutations that inhibit LD biogenesis, homotypic vacuolar membrane fusion or ESCRT function inhibit stress-induced autophagy of Nup159 and other ER proteins. Thus, we have obtained the first direct evidence that LDs and µLP can mediate ER stress-induced ER proteostasis, and identified direct roles for ESCRT and vacuolar membrane fusion in that process.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Autofagia , Gotículas Lipídicas/metabolismo , Microautofagia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteostase , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Vacúolos/metabolismo
3.
Viruses ; 11(9)2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540043

RESUMO

The herpes simplex virus type 1 (HSV-1) UL37 gene encodes for a multifunctional component of the virion tegument, which is necessary for secondary envelopment in the cytoplasm of infected cells, for motility of the viral particle, and for the first steps in the initiation of virus infection. This 120 kDa protein has several known viral interacting partners, including pUL36, gK/pUL20, pUS10, and VP26, and cellular interacting proteins which include TRAF6, RIG-I, and dystonin. These interactions are likely important for the functions of pUL37 at both early and late stages of infection. We employed a genetic approach to determine essential domains and amino acid residues of pUL37 and their associated functions in cellular localization and virion morphogenesis. Using marker-rescue/marker-transfer methods, we generated a library of GFP-tagged pUL37 mutations in the HSV-1 strain KOS genome. Through viral growth and ultra-structural analysis, we discovered that the C-terminus is essential for replication. The N-terminal 480 amino acids are dispensable for replication in cell culture, although serve some non-essential function as viral titers are reduced in the presence of this truncation. Furthermore, the C-terminal 133 amino acids are important in so much that their absence leads to a lethal phenotype. We further probed the carboxy terminal half of pUL37 by alanine scanning mutagenesis of conserved residues among alphaherpesviruses. Mutant viruses were screened for the inability to form plaques-or greatly reduced plaque size-on Vero cells, of which 22 mutations were chosen for additional analysis. Viruses discovered to have the greatest reduction in viral titers on Vero cells were examined by electron microscopy (EM) and by confocal light microscopy for pUL37-EGFP cellular localization. This genetic approach identified both essential and non-essential domains and residues of the HSV-1 UL37 gene product. The mutations identified in this study are recognized as significant candidates for further analysis of the pUL37 function and may unveil previously undiscovered roles and interactions of this essential tegument gene.


Assuntos
Aminoácidos/genética , Herpesvirus Humano 1/genética , Proteínas Estruturais Virais/genética , Replicação Viral , Aminoácidos/química , Animais , Técnicas de Cultura de Células , Chlorocebus aethiops , Herpesvirus Humano 1/química , Herpesvirus Humano 1/fisiologia , Mutação , Fenótipo , Células Vero , Proteínas Estruturais Virais/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus
4.
J Biol Chem ; 294(27): 10471-10489, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118223

RESUMO

Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.


Assuntos
Parede Celular/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/química , Cryptococcus neoformans/classificação , Levodopa/química , Espectroscopia de Ressonância Magnética , Melaninas/análise , Melaninas/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Tamanho da Partícula , Filogenia , Proteômica
5.
Nat Commun ; 10(1): 1432, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926815

RESUMO

Of the four separate PE biosynthetic pathways in eukaryotes, one occurs in the mitochondrial inner membrane (IM) and is executed by phosphatidylserine decarboxylase (Psd1). Deletion of Psd1 is lethal in mice and compromises mitochondrial function. We hypothesize that this reflects inefficient import of non-mitochondrial PE into the IM. Here, we test this by re-wiring PE metabolism in yeast by re-directing Psd1 to the outer mitochondrial membrane or the endomembrane system and show that PE can cross the IMS in both directions. Nonetheless, PE synthesis in the IM is critical for cytochrome bc1 complex (III) function and mutations predicted to disrupt a conserved PE-binding site in the complex III subunit, Qcr7, impair complex III activity similar to PSD1 deletion. Collectively, these data challenge the current dogma of PE trafficking and demonstrate that PE made in the IM by Psd1 support the intrinsic functionality of complex III.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Membranas Mitocondriais/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Mutação/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cancer Res ; 79(8): 1981-1995, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30777851

RESUMO

Upregulation of collagen matrix crosslinking directly increases its ability to relieve stress under the constant strain imposed by solid tumor, a matrix property termed stress relaxation. However, it is unknown how rapid stress relaxation in response to increased strain impacts disease progression in a hypoxic environment. Previously, it has been demonstrated that hypoxia-induced expression of the crosslinker procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), in sarcomas has resulted in increased lung metastasis. Here, we show that short stress relaxation times led to increased cell migration along a hypoxic gradient in 3D collagen matrices, and rapid stress relaxation upregulated PLOD2 expression via TGFß-SMAD2 signaling, forming a feedback loop between hypoxia and the matrix. Inhibition of this pathway led to a decrease in migration along the hypoxic gradients. In vivo, sarcoma primed in a hypoxic matrix with short stress relaxation time enhanced collagen fiber size and tumor density and increased lung metastasis. High expression of PLOD2 correlated with decreased overall survival in patients with sarcoma. Using a patient-derived sarcoma cell line, we developed a predictive platform for future personalized studies and therapeutics. Overall, these data show that the interplay between hypoxia and matrix stress relaxation amplifies PLOD2, which in turn accelerates sarcoma cell motility and metastasis. SIGNIFICANCE: These findings demonstrate that mechanical (stress relaxation) and chemical (hypoxia) properties of the tumor microenvironment jointly accelerate sarcoma motility and metastasis via increased expression of collagen matrix crosslinker PLOD2.


Assuntos
Movimento Celular , Matriz Extracelular/patologia , Regulação Neoplásica da Expressão Gênica , Hipóxia/fisiopatologia , Neoplasias Pulmonares/secundário , Oxigênio/metabolismo , Sarcoma/patologia , Animais , Apoptose , Proliferação de Células , Colágeno/química , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Reologia , Sarcoma/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Estresse Mecânico , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Arch Toxicol ; 92(8): 2587-2606, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29955902

RESUMO

To date, most in vitro toxicity testing has focused on acute effects of compounds at high concentrations. This testing strategy does not reflect real-life exposures, which might contribute to long-term disease outcome. We used a 3D-human dopaminergic in vitro LUHMES cell line model to determine whether effects of short-term rotenone exposure (100 nM, 24 h) are permanent or reversible. A decrease in complex I activity, ATP, mitochondrial diameter, and neurite outgrowth were observed acutely. After compound removal, complex I activity was still inhibited; however, ATP levels were increased, cells were electrically active and aggregates restored neurite outgrowth integrity and mitochondrial morphology. We identified significant transcriptomic changes after 24 h which were not present 7 days after wash-out. Our results suggest that testing short-term exposures in vitro may capture many acute effects which cells can overcome, missing adaptive processes, and long-term mechanisms. In addition, to study cellular resilience, cells were re-exposed to rotenone after wash-out and recovery period. Pre-exposed cells maintained higher metabolic activity than controls and presented a different expression pattern in genes previously shown to be altered by rotenone. NEF2L2, ATF4, and EAAC1 were downregulated upon single hit on day 14, but unchanged in pre-exposed aggregates. DAT and CASP3 were only altered after re-exposure to rotenone, while TYMS and MLF1IP were downregulated in both single-exposed and pre-exposed aggregates. In summary, our study shows that a human cell-based 3D model can be used to assess cellular adaptation, resilience, and long-term mechanisms relevant to neurodegenerative research.


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios Dopaminérgicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Rotenona/toxicidade , Testes de Toxicidade/métodos , Trifosfato de Adenosina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Humanos , Inseticidas/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Crescimento Neuronal/efeitos dos fármacos
8.
Cell Rep ; 19(12): 2557-2571, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636943

RESUMO

OPA1 is a GTPase that controls mitochondrial fusion, cristae integrity, and mtDNA maintenance. In humans, eight isoforms are expressed as combinations of long and short forms, but it is unclear whether OPA1 functions are associated with specific isoforms and/or domains. To address this, we expressed each of the eight isoforms or different constructs of isoform 1 in Opa1-/- MEFs. We observed that any isoform could restore cristae structure, mtDNA abundance, and energetic efficiency independently of mitochondrial network morphology. Long forms supported mitochondrial fusion; short forms were better able to restore energetic efficiency. The complete rescue of mitochondrial network morphology required a balance of long and short forms of at least two isoforms, as shown by combinatorial isoform silencing and co-expression experiments. Thus, multiple OPA1 isoforms are required for mitochondrial dynamics, while any single isoform can support all other functions. These findings will be useful in designing gene therapies for patients with OPA1 haploinsufficiency.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Metabolismo Energético , Células HeLa , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial
9.
Environ Sci Technol ; 51(12): 6821-6828, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28505437

RESUMO

Heteroaggregation of graphene oxide (GO) with nanometer- and micrometer-sized hematite colloids, which are naturally present in aquatic systems, is investigated in this study. The heteroaggregation rates between GO and hematite nanoparticles (HemNPs) were quantified by dynamic light scattering, while the heteroaggregation between GO and micrometer-sized hematite particles (HemMPs) was examined through batch adsorption and sedimentation experiments. The heteroaggregation rates of GO with HemNPs first increased and then decreased with increasing GO/HemNP mass concentration ratios. The conformation of GO-HemNP heteroaggregates at different GO/HemNP mass concentration ratios was observed through transmission electron microscopy imaging. Initially, GO underwent heteroaggregation with HemNPs through electrostatic attraction to form primary heteroaggregates, which were further bridged by GO to form bigger clusters. At high GO/HemNP mass concentration ratios where GO outnumbered HemNPs, heteroaggregation resulted in the formation of stable GO-HemNP nanohybrids that have a critical coagulation concentration of 308 mM NaCl at pH 5.2. In the case of HemMPs, GO adsorbed readily on the microparticles and, at an optimal GO/HemMP ratio of ∼0.002, the sedimentation of HemMPs was the fastest, most likely because of the formation of "electrostatic patches" leading to favorable aggregation of the microparticles.


Assuntos
Coloides , Compostos Férricos , Grafite , Óxidos
10.
Cell Metab ; 23(5): 921-9, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166949

RESUMO

mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells.


Assuntos
Luz , Mamíferos/metabolismo , Metaboloma , Mitocôndrias/metabolismo , Nanopartículas/química , Temperatura , Animais , Sequência de Bases , Linhagem Celular Tumoral , Células Clonais , DNA Mitocondrial/genética , Metabolismo Energético , Regulação da Expressão Gênica , Humanos , Metaboloma/genética , Metabolômica , Reprodutibilidade dos Testes
12.
Hum Mol Genet ; 25(9): 1754-70, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908608

RESUMO

The X-linked disease Barth syndrome (BTHS) is caused by mutations in TAZ; TAZ is the main determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, cardiolipin. To date, a detailed characterization of endogenous TAZ has only been performed in yeast. Further, why a given BTHS-associated missense mutation impairs TAZ function has only been determined in a yeast model of this human disease. Presently, the detailed characterization of yeast tafazzin harboring individual BTHS mutations at evolutionarily conserved residues has identified seven distinct loss-of-function mechanisms caused by patient-associated missense alleles. However, whether the biochemical consequences associated with individual mutations also occur in the context of human TAZ in a validated mammalian model has not been demonstrated. Here, utilizing newly established monoclonal antibodies capable of detecting endogenous TAZ, we demonstrate that mammalian TAZ, like its yeast counterpart, is localized to the mitochondrion where it adopts an extremely protease-resistant fold, associates non-integrally with intermembrane space-facing membranes and assembles in a range of complexes. Even though multiple isoforms are expressed at the mRNA level, only a single polypeptide that co-migrates with the human isoform lacking exon 5 is expressed in human skin fibroblasts, HEK293 cells, and murine heart and liver mitochondria. Finally, using a new genome-edited mammalian BTHS cell culture model, we demonstrate that the loss-of-function mechanisms for two BTHS alleles that represent two of the seven functional classes of BTHS mutation as originally defined in yeast, are the same when modeled in human TAZ.


Assuntos
Síndrome de Barth/genética , Fibroblastos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mutação/genética , Pele/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Síndrome de Barth/metabolismo , Síndrome de Barth/patologia , Células Cultivadas , Fibroblastos/citologia , Células HEK293 , Humanos , Camundongos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Hepáticas/patologia , Isoformas de Proteínas , Pele/citologia , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
13.
Dev Cell ; 35(5): 584-599, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26651293

RESUMO

The immediate responses to inhibition of phosphatidylcholine (PC) biosynthesis in yeast are altered phospholipid levels, slow growth, and defects in the morphology and localization of ER and mitochondria. With chronic lipid imbalance, yeast adapt. Lipid droplet (LD) biogenesis and conversion of phospholipids to triacylglycerol are required for restoring some phospholipids to near-wild-type levels. We confirmed that the unfolded protein response is activated by this lipid stress and find that Hsp104p is recruited to ER aggregates. We also find that LDs form at ER aggregates, contain polyubiquitinated proteins and an ER chaperone, and are degraded in the vacuole by a process resembling microautophagy. This process, microlipophagy, is required for restoration of organelle morphology and cell growth during adaptation to lipid stress. Microlipophagy does not require ATG7 but does requires ESCRT components and a newly identified class E VPS protein that localizes to ER and is upregulated by lipid imbalance.


Assuntos
Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/química , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas , Autofagia , Proteína 7 Relacionada à Autofagia , Citosol/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Fosfatidilcolinas/química , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Fosfolipídeos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , Ubiquitina/química , Vacúolos/metabolismo
14.
J Cell Biol ; 211(4): 795-805, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26598616

RESUMO

Defects in mitochondrial fusion or fission are associated with many pathologies, raising the hope that pharmacological manipulation of mitochondrial dynamics may have therapeutic benefit. This approach assumes that organ physiology can be restored by rebalancing mitochondrial dynamics, but this concept remains to be validated. We addressed this issue by analyzing mice deficient in Mff, a protein important for mitochondrial fission. Mff mutant mice die at 13 wk as a result of severe dilated cardiomyopathy leading to heart failure. Mutant tissue showed reduced mitochondrial density and respiratory chain activity along with increased mitophagy. Remarkably, concomitant deletion of the mitochondrial fusion gene Mfn1 completely rescued heart dysfunction, life span, and respiratory chain function. Our results show for the first time that retuning the balance of mitochondrial fusion and fission can restore tissue integrity and mitochondrial physiology at the whole-organ level. Examination of liver, testis, and cerebellum suggest, however, that the precise balance point of fusion and fission is cell type specific.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Proteínas de Membrana/genética , Mitocôndrias Cardíacas/fisiologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Animais , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Feminino , Pleiotropia Genética , Masculino , Proteínas de Membrana/deficiência , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Titulometria
15.
J Biol Chem ; 290(46): 27460-72, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26324718

RESUMO

Depletion of inositol has profound effects on cell function and has been implicated in the therapeutic effects of drugs used to treat epilepsy and bipolar disorder. We have previously shown that the anticonvulsant drug valproate (VPA) depletes inositol by inhibiting myo-inositol-3-phosphate synthase, the enzyme that catalyzes the first and rate-limiting step of inositol biosynthesis. To elucidate the cellular consequences of inositol depletion, we screened the yeast deletion collection for VPA-sensitive mutants and identified mutants in vacuolar sorting and the vacuolar ATPase (V-ATPase). Inositol depletion caused by starvation of ino1Δ cells perturbed the vacuolar structure and decreased V-ATPase activity and proton pumping in isolated vacuolar vesicles. VPA compromised the dynamics of phosphatidylinositol 3,5-bisphosphate (PI3,5P2) and greatly reduced V-ATPase proton transport in inositol-deprived wild-type cells. Osmotic stress, known to increase PI3,5P2 levels, did not restore PI3,5P2 homeostasis nor did it induce vacuolar fragmentation in VPA-treated cells, suggesting that perturbation of the V-ATPase is a consequence of altered PI3,5P2 homeostasis under inositol-limiting conditions. This study is the first to demonstrate that inositol depletion caused by starvation of an inositol synthesis mutant or by the inositol-depleting drug VPA leads to perturbation of the V-ATPase.


Assuntos
Anticonvulsivantes/farmacologia , Inositol/deficiência , Liases Intramoleculares/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/enzimologia , Ácido Valproico/farmacologia , Farmacorresistência Fúngica/genética , Deleção de Genes , Homeostase , Inositol/genética , Mio-Inositol-1-Fosfato Sintase/genética , Pressão Osmótica , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/genética
16.
Elife ; 42015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25918844

RESUMO

The conserved MICOS complex functions as a primary determinant of mitochondrial inner membrane structure. We address the organization and functional roles of MICOS and identify two independent MICOS subcomplexes: Mic27/Mic10/Mic12, whose assembly is dependent on respiratory complexes and the mitochondrial lipid cardiolipin, and Mic60/Mic19, which assembles independent of these factors. Our data suggest that MICOS subcomplexes independently localize to cristae junctions and are connected via Mic19, which functions to regulate subcomplex distribution, and thus, potentially also cristae junction copy number. MICOS subunits have non-redundant functions as the absence of both MICOS subcomplexes results in more severe morphological and respiratory growth defects than deletion of single MICOS subunits or subcomplexes. Mitochondrial defects resulting from MICOS loss are caused by misdistribution of respiratory complexes in the inner membrane. Together, our data are consistent with a model where MICOS, mitochondrial lipids and respiratory complexes coordinately build a functional and correctly shaped mitochondrial inner membrane.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Membrana/química , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/química , Saccharomyces cerevisiae/ultraestrutura , Cardiolipinas/química , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Gen Virol ; 95(Pt 8): 1755-1769, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24824860

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction.


Assuntos
Proteínas do Capsídeo/metabolismo , Herpesvirus Humano 8/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Animais , Linhagem Celular , Análise Mutacional de DNA , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Spodoptera
18.
Sci Rep ; 4: 4693, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24796975

RESUMO

We provide direct evidence that Bin/Amphiphysin/Rvs (BAR) family members bend the steady state membrane architecture of organelles in intact cells. In response to inducible BAR molecular actuators, organelles exhibit distinct changes to the orientation and degree of their membrane curvature. This rapidly inducible system may offer a mechanism by which to better understand the structure-function relationship of intracellular organelles.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Relação Estrutura-Atividade
19.
J Biol Chem ; 289(3): 1768-78, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24285538

RESUMO

After biosynthesis, an evolutionarily conserved acyl chain remodeling process generates a final highly homogeneous and yet tissue-specific molecular form of the mitochondrial lipid cardiolipin. Hence, cardiolipin molecules in different organisms, and even different tissues within the same organism, contain a distinct collection of attached acyl chains. This observation is the basis for the widely accepted paradigm that the acyl chain composition of cardiolipin is matched to the unique mitochondrial demands of a tissue. For this hypothesis to be correct, cardiolipin molecules with different acyl chain compositions should have distinct functional capacities, and cardiolipin that has been remodeled should promote cardiolipin-dependent mitochondrial processes better than its unremodeled form. However, functional disparities between different molecular forms of cardiolipin have never been established. Here, we interrogate this simple but crucial prediction utilizing the best available model to do so, Saccharomyces cerevisiae. Specifically, we compare the ability of unremodeled and remodeled cardiolipin, which differ markedly in their acyl chain composition, to support mitochondrial activities known to require cardiolipin. Surprisingly, defined changes in the acyl chain composition of cardiolipin do not alter either mitochondrial morphology or oxidative phosphorylation. Importantly, preventing cardiolipin remodeling initiation in yeast lacking TAZ1, an ortholog of the causative gene in Barth syndrome, ameliorates mitochondrial dysfunction. Thus, our data do not support the prevailing hypothesis that unremodeled cardiolipin is functionally distinct from remodeled cardiolipin, at least for the functions examined, suggesting alternative physiological roles for this conserved pathway.


Assuntos
Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Deleção de Genes , Humanos , Mitocôndrias/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(36): 14717-22, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959886

RESUMO

Nanoparticle gene therapy holds great promise for the treatment of malignant disease in light of the large number of potent, tumor-specific therapeutic payloads potentially available for delivery. To be effective, gene therapy vehicles must be able to deliver their therapeutic payloads to metastatic lesions after systemic administration. Here we describe nanoparticles comprised of a core of high molecular weight linear polyethylenimine (LPEI) complexed with DNA and surrounded by a shell of polyethyleneglycol-modified (PEGylated) low molecular weight LPEI. Compared with a state-of-the-art commercially available in vivo gene delivery formulation, i.v. delivery of the core/PEGylated shell (CPS) nanoparticles provided more than a 16,000-fold increase in the ratio of tumor to nontumor transfection. The vast majority of examined liver and lung metastases derived from a colorectal cancer cell line showed transgene expression after i.v. CPS injection in an animal model of metastasis. Histological examination of tissues from transfected mice revealed that the CPS nanoparticles selectively transfected neoplastic cells rather than stromal cells within primary and metastatic tumors. However, only a small fraction of neoplastic cells (<1%) expressed the transgene, and the extent of delivery varied with the tumor cell line, tumor site, and host mouse strain used. Our results demonstrate that these CPS nanoparticles offer substantial advantages over previously described formulations for in vivo nanoparticle gene therapeutics. At the same time, they illustrate that major increases in the effectiveness of such approaches are needed for utility in patients with metastatic cancer.


Assuntos
Terapia Genética/métodos , Proteínas Luminescentes/genética , Nanopartículas/administração & dosagem , Neoplasias/terapia , Transfecção/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HT29 , Células Hep G2 , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoimina/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...