Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Endocrinol ; 72(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930232

RESUMO

There is increasing interest in retinoic acid (RA) as a regulator of the complex biological processes underlying the cognitive functions performed by the brain. The importance of RA in brain function is underlined by the brain's high efficiency in converting vitamin A into RA. One crucial action of RA in the brain is dependent on RA receptor α (RARα) transport out of the nucleus, where it no longer regulates transcription but carries out non-genomic functions. RARα, when localised in the cytoplasm, particularly in neuronal dendrites, acts as a translational suppressor. It regulates protein translation as a crucial part of the mechanism maintaining homoeostatic synaptic plasticity, which is characterised by neuronal changes necessary to restore and balance the excitability of neuronal networks after perturbation events. Under normal conditions of neurotransmission, RARα without ligand suppresses the translation of proteins. When neural activity is reduced, RA synthesis is stimulated, and RA signalling via RARα derepresses the translation of proteins and synergistically with the fragile X mental retardation protein allows the synthesis of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors that re-establish normal levels of synaptic activity. Homoeostatic synaptic plasticity underlies many cognitive processes, so its impairment due to dysregulation of RA signalling may be involved in neurodevelopmental disorders such as autism, which is also associated with FMRP. A full understanding of RA signalling control of homoeostatic synaptic plasticity may point to treatments.


Assuntos
Disfunção Cognitiva , Tretinoína , Humanos , Tretinoína/farmacologia , Tretinoína/metabolismo , Receptores do Ácido Retinoico , Homeostase/fisiologia , Receptor alfa de Ácido Retinoico/genética , Plasticidade Neuronal
2.
iScience ; 26(8): 107373, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599827

RESUMO

Vitamin A is a micronutrient essential for vertebrate animals maintained in homeostatic balance in the body; however, little is known about the control of this balance. This study investigated whether the hypothalamus, a key integrative brain region, regulates vitamin A levels in the liver and circulation. Vitamin A in the form of retinol or retinoic acid was stereotactically injected into the 3rd ventricle of the rat brain. Alternatively, retinoids in the mouse hypothalamus were altered through retinol-binding protein 4 (Rbp4) gene knockdown. This led to rapid change in the liver proteins controlling vitamin A homeostasis as well as vitamin A itself in liver and the circulation. Prolonged disruption of Rbp4 in the region of the arcuate nucleus of the mouse hypothalamus altered retinol levels in the liver. This supports the concept that the brain may sense retinoids and influence whole-body vitamin A homeostasis with a possible "vitaminostatic" role.

3.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672220

RESUMO

The pineal gland is integral to the circadian timing system due to its role in nightly melatonin production. Retinoic acid (RA) is a potent regulator of gene transcription and has previously been found to exhibit diurnal changes in synthesis and signalling in the rat pineal gland. This study investigated the potential for the interaction of these two systems. PCR was used to study gene expression in mouse and human pineal glands, ex-vivo organotypic cultured rat pineal gland and cell lines. The mouse and human pineal glands were both found to express the necessary components required for RA signalling. RA influences the circadian clock in the brain, therefore the short-term effect of RA on clock gene expression was determined in ex vivo rat pineal glands but was not found to rapidly regulate Per1, Per2, Bmal1, or Cry1. The interaction between RA and melatonin was also investigated and, unexpectedly, melatonin was found to suppress the induction of gene transcription by RA. This study demonstrates that pineal expression of the RA signalling system is conserved across mammalian species. There is no short-term regulation of the circadian clock but an inhibitory effect of melatonin on RA transcriptional activity was demonstrated, suggesting that there may be functional cross-talk between these systems.


Assuntos
Melatonina , Glândula Pineal , Ratos , Camundongos , Humanos , Animais , Glândula Pineal/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Transdução de Sinais , Mamíferos/metabolismo
4.
Cerebellum ; 22(2): 206-222, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218524

RESUMO

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.


Assuntos
Encéfalo , Malformações do Sistema Nervoso , Animais , Feminino , Humanos , Camundongos , Cerebelo/anormalidades , Neurônios
5.
Methods Mol Biol ; 2524: 197-207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821473

RESUMO

The present protocol describes a bioluminescence reporter assay developed to quantify the ability of synthetic agonists of retinoic acid receptors (RARs) to activate glutamate receptor subunit 1 (GluR1) translation. The reporter assay uses firefly luciferase under the control of the GluR1 5' untranslated region (5' UTR) which is bound by RARs to regulate its translation. This method is used to demonstrate the role of RARα in retinoic acid regulation of GluR1 translation. This method may also be used to screen drugs that influence RAR induction of GluR1 translation as an important mechanism controlling learning and memory in the brain.


Assuntos
Ácido Glutâmico , Receptores de AMPA , Regiões 5' não Traduzidas , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
6.
Mol Neurobiol ; 59(8): 5070-5083, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35666403

RESUMO

Δ9-Tetrahydrocannabinol (Δ9-THC) inhibits tics in individuals with Tourette syndrome (TS). Δ9-THC has similar affinities for CB1/CB2 cannabinoid receptors. However, the effect of HU-308, a selective CB2 receptor agonist, on repetitive behaviors has not been investigated. The effects of 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced motor-like tics and Δ9-THC were studied with gene analysis. The effects of HU-308 on head twitch response (HTR), ear scratch response (ESR), and grooming behavior were compared between wildtype and CB2 receptor knockout (CB2-/-) mice, and in the presence/absence of DOI or SR141716A, a CB1 receptor antagonist/inverse agonist. The frequency of DOI-induced repetitive behaviors was higher in CB2-/- than in wildtype mice. HU-308 increased DOI-induced ESR and grooming behavior in adult CB2-/- mice. In juveniles, HU-308 inhibited HTR and ESR in the presence of DOI and SR141716A. HU-308 and beta-caryophyllene significantly increased HTR. In the left prefrontal cortex, DOI increased transcript expression of the CB2 receptor and GPR55, but reduced fatty acid amide hydrolase (FAAH) and α/ß-hydrolase domain-containing 6 (ABHD6) expression levels. CB2 receptors are required to reduce 5-HT2A/2C-induced tics in adults. HU-308 has an off-target effect which increases 5-HT2A/2C-induced motor-like tics in adult female mice. The increased HTR in juveniles induced by selective CB2 receptor agonists suggests that stimulation of the CB2 receptor may generate motor tics in children. Sex differences suggest that the CB2 receptor may contribute to the prevalence of TS in boys. The 5-HT2A/2C-induced reduction in endocannabinoid catabolic enzyme expression level may explain the increased endocannabinoids' levels in patients with TS.


Assuntos
Síndrome de Tourette , Animais , Dronabinol/farmacologia , Endocanabinoides , Feminino , Humanos , Masculino , Camundongos , Monoacilglicerol Lipases , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides , Rimonabanto/farmacologia , Serotonina , Tiques
7.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34417282

RESUMO

Retinoic acid (RA), a metabolite of vitamin A, has many physiological functions, and mounting evidence points to important roles in cognition. In vitro experiments indicate that RA is involved in homeostatic synaptic scaling in the hippocampus, which supports overall network stability during learning. It has been previously determined that disrupted RA signaling in the hippocampus causes deterioration of memory, that RA signaling declines with age in brain, and that application of RA reverses this decline. Here, we explore whether RA signaling is altered in an animal model of neurocognitive aging. We used a Morris water maze protocol to study cognitive decline in aged rats, which assesses hippocampus-dependent spatial memory and reveals substantial interindividual differences in aged animals. Aged unimpaired (AU) rats perform on par with young (Y), while aged impaired (AI) animals exhibit spatial memory deficits. We show that the major substrate for RA, retinol binding protein 4 (RBP4), is decreased in AU rats, and retinol cell surface receptor declines with chronological age. Other affected components of RA signaling include selective increases in AI animals in hippocampal synthesis (RALDH1) and catabolism of RA (CYP26B1), RA receptor α, the RA regulated ionotropic glutamate receptor (GluR1), as well as fragile X mental retardation protein (FMRP). The results support the conclusion that, surprisingly, increased RA signaling in the aged hippocampus is associated with poor cognitive outcome.


Assuntos
Hipocampo , Tretinoína , Animais , Cognição , Aprendizagem em Labirinto , Transtornos da Memória , Ratos , Memória Espacial
8.
Br J Pharmacol ; 178(3): 614-625, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33125731

RESUMO

BACKGROUND AND PURPOSE: Medicinal cannabis is in increasing use by patients with Tourette syndrome, a neuropsychiatric disorder that affects about 1% of the general population and has a childhood onset. However, the pharmacological effects of Δ9 -tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) have not been systematically screened or compared between juvenile and young adult rodents in a model of Tourette syndrome. EXPERIMENTAL APPROACH: The administration of 2,5-dimethoxy-4-iodoamphetamine (DOI) increases head twitch response (HTR) and ear scratch response (ESR) and has been proposed as an animal model useful to respectively study motor tics and premonitory urges associated with tic disorders. KEY RESULTS: Comparing the potency of Δ9 -THC to inhibit DOI-induced repetitive behaviours, the rank order was ESR > grooming > HTR versus ESR = grooming > HTR in young adult versus juvenile mice. Δ9 -THC (5 mg·kg-1 ) induced severe adverse effects in the form of cataleptic behaviour in control mice and significantly increased ESR in juveniles. The pharmacological effects of CBD have not been studied in models of Tourette syndrome. In juveniles, CBD had no effect on DOI-induced ESR and grooming behaviours. CBD alone induced side effects, significantly increasing the frequency of HTR in juveniles and young adults. CONCLUSION AND IMPLICATIONS: Δ9 -THC efficaciously reverses peripheral but not central motor tics. Δ9 -THC may reduce ambulatory movements and evoke premonitory urges in some paediatric patients. The small "therapeutic window" in juveniles suggests that CBD may not effectively treat motor tics in children and may even exacerbate tics in a population of patients with Tourette syndrome.


Assuntos
Canabidiol , Maconha Medicinal , Síndrome de Tourette , Animais , Canabidiol/farmacologia , Criança , Tomada de Decisões , Dronabinol/farmacologia , Humanos , Camundongos , Síndrome de Tourette/tratamento farmacológico
9.
Annu Rev Nutr ; 40: 247-272, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966186

RESUMO

The history of vitamin A goes back over one hundred years, but our realization of its importance for the brain and cognition is much more recent. The brain is more efficient than other target tissues at converting vitamin A to retinoic acid (RA), which activates retinoic acid receptors (RARs). RARs regulate transcription, but their function in the cytoplasm to control nongenomic actions is also crucial. Controlled synthesis of RA is essential for regulating synaptic plasticity in regions of the brain involved in learning and memory, such as the hippocampus. Vitamin A deficiency results in a deterioration of these functions, and failure of RA signaling is perhaps associated with normal cognitive decline with age as well as with Alzheimer's disease. Further, several psychiatric and developmental disorders that disrupt cognition are also linked with vitamin A and point to their possible treatment with vitamin A or RA.


Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Tretinoína/farmacologia , Vitamina A/farmacologia , Animais , Humanos
10.
Expert Opin Drug Metab Toxicol ; 16(11): 1097-1108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32799572

RESUMO

INTRODUCTION: Neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by progressive neuronal loss and currently lack effective treatments that block the degenerative process. It has been suggested that retinoids, a class of vitamin A-derived compounds, may hold potential as future therapeutics for these disorders. AREAS COVERED: In this review, we explore the role of retinoids in modulating various signaling pathways in the brain which influence pathologically relevant processes such as cellular differentiation, immune and antioxidant response, neurite outgrowth and neurite regeneration. These actions are predominantly mediated by the retinoic acid receptors and we discuss the developmental history of ligands for these receptors, assessing how refinements in receptor binding specificity and improved pharmacokinetic properties may influence the management of off-target effects. EXPERT OPINION: New approaches to understanding retinoid's mechanisms of action, including non-genomic pathways, and how these mechanisms interact may prove vital in the development of future retinoid-based neurodegenerative disease treatments.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Receptores do Ácido Retinoico/efeitos dos fármacos , Retinoides/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Humanos , Ligantes , Doenças Neurodegenerativas/fisiopatologia , Ligação Proteica , Receptores do Ácido Retinoico/metabolismo , Retinoides/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
11.
Methods Enzymol ; 637: 119-150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32359643

RESUMO

Retinoic acid (RA) is a lipid signaling molecule that has a crucial role in growth and survival of neurons as well as regulation of neuronal plasticity in the central nervous system. Complete understanding of the distribution of RA is necessary to identify foci of RA signaling. However, RA itself is very difficult to detect by immunohistochemistry as there are few effective antibodies to this lipid and it can be difficult to fix in place in tissue. A set of retinaldehyde dehydrogenases (RALDHs) catalyze the last step of RA synthesis and their distribution can be used as a proxy for RA distribution. This protocol uses the example of RALDH2 expression in the motor neurons of the spinal cord as a demonstration of the approach and describes methods that can improve its effectiveness. Immunodetection is impacted by protein cross linking and protein denaturation as well as antigen/epitope masking by various fixatives. Finding a suitable fixative that preserves morphology and tissue structure by linking cellular component such as proteins and lipids in an indissoluble macromolecular network while keeping functional groups, including antigens, intact is essential. Here, we discuss fixatives in general and also describe a fixation protocol that allows detection of multiple antigens in the same section with a periodate-lysine-paraformaldehyde (PLP) fixative. This keeps tissue structure and antigen well preserved in the adult spinal cord to show RALDH2 expression in motor neurons.


Assuntos
Neurônios , Tretinoína , Sistema Nervoso Central , Fixadores , Imuno-Histoquímica
12.
Methods Enzymol ; 637: 513-538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32359657

RESUMO

The retinoic acid (RA) signaling pathway is crucial for the control of embryonic development and also regulates function of several organ systems in the adult, including the central nervous system. The retinoic acid receptors (RARs) that mediate the majority of the functions of RA can promote proliferation, differentiation, morphogenesis and cell survival. Dysregulation of this signaling pathway has been considered in the pathophysiology of various diseases including neurodegenerative disorders such Alzheimer's disease and amyotrophic lateral sclerosis. Thus, drugs targeted to the RARs have been proposed as treatments for such diseases. Understanding how these drugs distribute in the body is essential to determine their potential effectiveness. However measuring tissue levels of what are often lipophilic drugs can be difficult. Here we describe an indirect measurement of RAR ligand tissue distribution after intraperitoneal injection into rodents that uses a sensitive RA reporter cell line.


Assuntos
Preparações Farmacêuticas , Receptores do Ácido Retinoico , Diferenciação Celular , Receptores do Ácido Retinoico/genética , Transdução de Sinais , Tretinoína
13.
J Alzheimers Dis ; 73(3): 935-954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884477

RESUMO

Retinoic acid has been previously proposed in the treatment of Alzheimer's disease (AD). Here, five transgenic mouse models expressing AD and frontotemporal dementia risk genes (i.e., PLB2APP, PLB2TAU, PLB1Double, PLB1Triple, and PLB4) were used to investigate if consistent alterations exist in multiple elements of the retinoic acid signaling pathway in these models. Many steps of the retinoic acid signaling pathway including binding proteins and metabolic enzymes decline, while the previously reported increase in RBP4 was only consistent at late (6 months) but not early (3 month) ages. The retinoic acid receptors were exceptional in their consistent decline in mRNA and protein with transcript decline of retinoic acid receptors ß and γ by 3 months, before significant pathology, suggesting involvement in early stages of disease. Decline in RBP1 transcript may also be an early but not late marker of disease. The decline in the retinoic acid signaling system may therefore be a therapeutic target for AD and frontotemporal dementia. Thus, novel stable retinoic acid receptor modulators (RAR-Ms) activating multiple genomic and non-genomic pathways were probed for therapeutic control of gene expression in rat primary hippocampal and cortical cultures. RAR-Ms promoted the non-amyloidogenic pathway, repressed lipopolysaccharide induced inflammatory genes and induced genes with neurotrophic action. RAR-Ms had diverse effects on gene expression allowing particular RAR-Ms to be selected for maximal therapeutic effect. Overall the results demonstrated the early decline of retinoic acid signaling in AD and frontotemporal dementia models and the activity of stable and potent alternatives to retinoic acid as potential therapeutics.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Receptores do Ácido Retinoico/agonistas , Tretinoína/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tretinoína/metabolismo
14.
Front Mol Neurosci ; 12: 259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736706

RESUMO

Retinoic acid (RA) is the active metabolite of vitamin A but is also used as a medication, primarily for acne in which the treatment regime lasts several months. A number of studies have indicated that treatment with RA over this time period impacts the hypothalamic-pituitary-adrenal (HPA) axis and may contribute to a number of the side-effects of the drug. No studies though have investigated the short-term, early effects RA may have on the HPA axis via the transcriptional pathways activated by the RA receptor. This study investigated the action of RA over 3 days on regulatory components of the HPA axis. Several key genes involved in glucocorticoid feedback pathways in the hippocampus, hypothalamus and pituitary were unchanged after 3-days exposure to RA. Key elements though in the adrenal gland involved in corticosterone and aldosterone synthesis were altered in particular with the Cyp11b2 gene downregulated in vivo and ex vivo. The rapid, 5 h, change in Cyp11b2 expression suggested this activation may be direct. These results highlight the adrenal gland as a target of short-term action of RA and potentially a trigger component in the mechanisms by which the long-term adverse effects of RA treatment occur.

15.
Methods Mol Biol ; 2019: 181-192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31359397

RESUMO

The effect of all-trans retinoic acid (RA) on embryogenesis is tissue specific and highly concentration dependent. Using a liquid chromatography/mass spectrometry-based method to quantify trace amounts of RA in embryonic tissue requires expensive specialist facilities. Here, we describe the use of a RA response element (RARE)-lacZ reporter cell-based method, which is simple and cost effective, to measure RA levels in small pieces of tissue from the embryo. We further apply this method to quantitatively assay activities of RA-synthesizing and RA-catabolizing enzymes, the key regulators of RA bioavailability in tissues and developing organs of the embryo.


Assuntos
Embrião de Mamíferos/química , Genes Reporter , Tretinoína/análise , Aldeído Desidrogenase/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida , Família 26 do Citocromo P450/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Tretinoína/farmacologia
16.
Cell Commun Signal ; 17(1): 40, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046795

RESUMO

Retinoic acid (RA) is the active metabolite of vitamin A and essential for many physiological processes, particularly the induction of cell differentiation. In addition to regulating genomic transcriptional activity via RA receptors (RARs) and retinoid X receptors (RXRs), non-genomic mechanisms of RA have been described, including the regulation of ERK1/2 kinase phosphorylation, but are poorly characterised. In this study, we test the hypothesis that genomic and non-genomic mechanisms of RA are regulated independently with respect to the involvement of ligand-dependent RA receptors. A panel of 28 retinoids (compounds with vitamin A-like activity) showed a marked disparity in genomic (gene expression) versus non-genomic (ERK1/2 phosphorylation) assays. These results demonstrate that the capacity of a compound to activate gene transcription does not necessarily correlate with its ability to regulate a non-genomic activity such as ERK 1/2 phosphorylation. Furthermore, a neurite outgrowth assay indicated that retinoids that could only induce either genomic, or non-genomic activities, were not strong promoters of neurite outgrowth, and that activities with respect to both transcriptional regulation and ERK1/2 phosphorylation produced maximum neurite outgrowth. These results suggest that the development of effective retinoids for clinical use will depend on the selection of compounds which have maximal activity in non-genomic as well as genomic assays.


Assuntos
Sistema de Sinalização das MAP Quinases , Crescimento Neuronal/efeitos dos fármacos , Retinoides/farmacologia , Transcriptoma , Linhagem Celular Tumoral , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo
17.
Mol Neurobiol ; 56(10): 7074-7084, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30972628

RESUMO

Retinoic acid (RA) regulates numerous aspects of central nervous system function through modulation of gene transcription via retinoic acid receptors (RARs). However, RA has important roles independent of gene transcription (non-genomic actions) and in the brain a crucial regulator of homeostatic plasticity is RAR control of glutamate receptor subunit 1 (GluR1) translation. An assay to quantify RAR regulation of GluR1 translation would be beneficial both to study the molecular components regulating this system and screen drugs that influence this critical mechanism for learning and memory in the brain. A bioluminescence reporter assay was developed that expresses firefly luciferase under the control of the GluR1 5' untranslated region bound by RAR. This assay was introduced into SH-SY5Y cells and used to demonstrate the role of RARα in RA regulation of GluR1 translation. A screen of synthetic RAR and RXR ligands indicated that only a subset of these ligands activated GluR1 translation. The results demonstrate the practicality of this assay to explore the contribution of RARα to this pathway and that the capacity of RAR ligands to activate translation is a quality restricted to a limited number of compounds, with implications for their RAR selectivity and potentially their specificity in drug use.


Assuntos
Bioensaio , Genes Reporter , Luminescência , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de AMPA/biossíntese , Tretinoína/farmacologia , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Ligantes , Ratos , Receptor alfa de Ácido Retinoico/genética , Tretinoína/química
18.
Mol Neurobiol ; 55(11): 8219-8235, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29520716

RESUMO

Vitamin A is important for the circadian timing system; deficiency disrupts daily rhythms in activity and clock gene expression, and reduces the nocturnal peak in melatonin in the pineal gland. However, it is currently unknown how these effects are mediated. Vitamin A primarily acts via the active metabolite, retinoic acid (RA), a transcriptional regulator with emerging non-genomic activities. We investigated whether RA is subject to diurnal variation in synthesis and signaling in the rat pineal gland. Its involvement in two key molecular rhythms in this gland was also examined: kinase activation and induction of Aanat, which encodes the rhythm-generating melatonin synthetic enzyme. We found diurnal changes in expression of several genes required for RA signaling, including a RA receptor and synthetic enzymes. The RA-responsive gene Cyp26a1 was found to change between day and night, suggesting diurnal changes in RA activity. This corresponded to changes in RA synthesis, suggesting rhythmic production of RA. Long-term RA treatment in vitro upregulated Aanat transcription, while short-term treatment had no effect. RA was also found to rapidly downregulate extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, suggesting a rapid non-genomic action which may be involved in driving the molecular rhythm in ERK1/2 activation in this gland. These results demonstrate that there are diurnal changes in RA synthesis and activity in the rat pineal gland which are partially under circadian control. These may be key to the effects of vitamin A on circadian rhythms, therefore providing insight into the molecular link between this nutrient and the circadian system.


Assuntos
Ritmo Circadiano , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glândula Pineal/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Arilalquilamina N-Acetiltransferase/biossíntese , Arilalquilamina N-Acetiltransferase/genética , Ritmo Circadiano/genética , Escuridão , Regulação para Baixo/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Masculino , Modelos Biológicos , Norepinefrina/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Retinal Desidrogenase/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia
19.
Mol Neurobiol ; 55(3): 1942-1950, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28244006

RESUMO

All-trans retinoic acid (ATRA) plays key roles in neurogenesis mediated by retinoic acid receptors (RARs). RARs are important targets for the therapeutic regulation of neurogenesis but effective drug development depends on modelling-based strategies to design high-specificity ligands in combination with good biological assays to discriminate between target-specificity and off-target effects. Using neuronal differentiation as a model, the aim of this study was to test the hypothesis that responses across different temporal scales and assay platforms can be used as comparable measures of retinoid activity. In biological assays based on cell phenotype or behaviour, two structurally similar synthetic retinoids, differing in RAR affinity and specificity, retained their relative activities across different temporal scales. In contrast, assays based on the transcriptional activation of specific genes in their normal genomic context were less concordant with biological assays. Gene-induction assays for retinoid activity as modulators of neurogenesis require careful interpretation in the light of variation in ligand-receptor affinity, receptor expression and gene function. A better characterization of neuronal phenotypes and their regulation by retinoids is badly needed as a framework for understanding how to regulate neuronal development.


Assuntos
Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Retinoides/síntese química , Retinoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Humanos , Neuritos/fisiologia , Neurogênese/fisiologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/fisiologia , Fatores de Tempo
20.
Diabetes ; 66(4): 1041-1051, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28087565

RESUMO

Pregestational diabetes is highly associated with an increased risk of birth defects. However, factors that can increase or reduce the expressivity and penetrance of malformations in pregnancies in women with diabetes remain poorly identified. All-trans retinoic acid (RA) plays crucial roles in embryogenesis. Here, we find that Cyp26a1, which encodes a key enzyme for catabolic inactivation of RA required for tight control of local RA concentrations, is significantly downregulated in embryos of diabetic mice. Embryonic tissues expressing Cyp26a1 show reduced efficiency of RA clearance. Embryos exposed to diabetes are thus sensitized to RA and more vulnerable to the deleterious effects of increased RA signaling. Susceptibility to RA teratogenesis is further potentiated in embryos with a preexisting genetic defect of RA metabolism. Increasing RA clearance efficiency using a preconditioning approach can counteract the increased susceptibility to RA teratogenesis in embryos of diabetic mice. Our findings provide new insight into gene-environment interactions that influence individual risk in the manifestation of diabetes-related birth defects and shed light on environmental risk factors and genetic variants for a stratified medicine approach to screening women with diabetes who are of childbearing age and assessing the risk of birth defects during pregnancy.


Assuntos
Anormalidades Congênitas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Gravidez em Diabéticas/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Tretinoína/metabolismo , Animais , Regulação para Baixo , Desenvolvimento Embrionário/genética , Feminino , Técnicas de Silenciamento de Genes , Interação Gene-Ambiente , Homeostase , Camundongos , Gravidez , Ácido Retinoico 4 Hidroxilase/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...