Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(17): 6402-6409, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699250

RESUMO

Singlet fission is an exciton multiplication process that allows for the conversion of one singlet exciton into two triplet excitons. Organic semiconductors, such as acenes and their soluble bis(triisopropylsilylethynyl) (TIPS) substituted counterparts, have played a major role in elucidating the understanding of the underlying mechanisms of singlet fission. Despite this, one prominent member of the acene family that has received little experimental attention to date is TIPS-anthracene, even with computational studies suggesting potential high singlet fission yields in the solid state. Here, time-resolved spectroscopic and magneto-photoluminescence measurements were performed on spin-cast films of TIPS-anthracene, showing evidence for singlet fission. A singlet fission yield of 19% (out of 200%) is estimated from transient absorption spectroscopy. Kinetic modeling of the magnetic field effect on photoluminescence suggests that fast rates of triplet dissociation lead to a low magnetic photoluminescence effect and that non-radiative decay of both the S1 and 1(TT) states is the cause for the low triplet yield.

2.
Nat Rev Chem ; 8(2): 136-151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273177

RESUMO

Exciton science sits at the intersection of chemical, optical and spin-based implementations of information processing, but using excitons to conduct logical operations remains relatively unexplored. Excitons encoding information could be read optically (photoexcitation-photoemission) or electrically (charge recombination-separation), travel through materials via exciton energy transfer, and interact with one another in stimuli-responsive molecular excitonic devices. Excitonic logic offers the potential to mediate electrical, optical and chemical information. Additionally, high-spin triplet and quintet (multi)excitons offer access to well defined spin states of relevance to magnetic field effects, classical spintronics and spin-based quantum information science. In this Roadmap, we propose a framework for developing excitonic computing based on singlet fission (SF) and triplet-triplet annihilation (TTA). Various molecular components capable of modulating SF/TTA for logical operations are suggested, including molecular photo-switching and multi-colour photoexcitation. We then outline a pathway for constructing excitonic logic devices, considering aspects of circuit assembly, logical operation synchronization, and exciton transport and amplification. Promising future directions and challenges are identified, and the potential for realizing excitonic computing in the near future is discussed.

3.
J Am Chem Soc ; 145(40): 22058-22068, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37787467

RESUMO

The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.

4.
J Am Chem Soc ; 145(28): 15275-15283, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417583

RESUMO

The quintet triplet-pair state may be generated upon singlet fission and is a critical intermediate that dictates the fate of excitons, which can be exploited for photovoltaics, information technologies, and biomedical imaging. In this report, we demonstrate that continuous-wave and pulsed electron spin resonance techniques such as phase-inverted echo-amplitude detected nutation (PEANUT), which have emerged as the primary tool for identifying the spin pathways in singlet fission, probe fundamentally different triplet-pair species. We directly observe that the generation rate of high-spin triplet pairs is dependent on the molecular orientation with respect to the static magnetic field. Moreover, we demonstrate that this observation can prevent incorrect analysis of continuous-wave electron spin resonance (cw-ESR) measurements and provide insight into the design of materials to target specific pathways that optimize exciton properties for specific applications.

5.
J Phys Chem Lett ; 14(20): 4742-4747, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37184362

RESUMO

Two strategies for improving solar energy efficiencies, triplet fusion and singlet fission, rely on the details of triplet-triplet interactions. In triplet fusion, there are several steps, each of which is a possible loss mechanism. In solution, the parameters describing triplet fusion collisions are difficult to inspect. Here we show that these parameters can be determined by examining the magnetic field dependence of triplet fusion upconversion. We show that there is a reduction of the magnetic field effect for perylene triplet fusion as the system moves from the quadratic to linear annihilation regimes with an increase in laser power. Our data are modeled with a small set of parameters that characterize the triplet fusion dynamics. These parameters are cross-validated with molecular dynamics simulations. This approach can be applied to both solution and solid state materials, providing a tool for screening potential annihilators for photon upconversion.

6.
Angew Chem Int Ed Engl ; 62(20): e202301678, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914561

RESUMO

Polydopamine (PDA) is a synthetic model for melanin and has a wide range of opto-electronic properties that underpin its utility in applied and biological settings, from broadband light absorbance to possessing stable free radical species. Here, we show that PDA free radicals are photo-responsive under visible light irradiation, enabling PDA to serve as a photo-redox catalyst. Steady-state and transient electron spin resonance spectroscopy reveals a reversible amplification in semiquinone radical population within PDA under visible light. This photo-response modifies the redox potential of PDA and supports sensitisation of exogenous species via photoinduced electron transfer (PET). We demonstrate the utility of this discovery by employing PDA nanoparticles to photosensitise a common diaryliodonium photoinitiator and initiate free-radical polymerisation (FRP) of vinylic monomers. In situ 1 H nuclear magnetic resonance spectroscopy reveals an interplay between PDA-driven photosensitising and radical quenching during FRP under blue, green, and red light. This work provides crucial insights into the photoactive free radical properties of melanin-like materials and reveals a promising new application for polydopamine as a photosensitiser.

7.
Nat Commun ; 14(1): 1441, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922502

RESUMO

Quantum sensing and imaging of magnetic fields has attracted broad interests due to its potential for high sensitivity and spatial resolution. Common systems used for quantum sensing require either optical excitation (e.g., nitrogen-vacancy centres in diamond, atomic vapor magnetometers), or cryogenic temperatures (e.g., SQUIDs, superconducting qubits), which pose challenges for chip-scale integration and commercial scalability. Here, we demonstrate an integrated organic light emitting diode (OLED) based solid-state sensor for magnetic field imaging, which employs spatially resolved magnetic resonance to provide a robust mapping of magnetic fields. By considering the monolithic OLED as an array of individual virtual sensors, we achieve sub-micron magnetic field mapping with field sensitivity of ~160 µT Hz-1/2 µm-2. Our work demonstrates a chip-scale OLED-based laser free magnetic field sensor and an approach to magnetic field mapping built on a commercially relevant and manufacturable technology.

8.
Angew Chem Int Ed Engl ; 62(27): e202218174, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36951117

RESUMO

Back-contact architectures offer a promising route to improve the record efficiencies of perovskite solar cells (PSCs) by eliminating parasitic light absorption. However, the performance of back-contact PSCs is limited by inadequate carrier diffusion in perovskite. Here, we report that perovskite films with a preferred out-of-plane orientation show improved carrier dynamic properties. With the addition of guanidine thiocyanate, the films exhibit carrier lifetimes and mobilities increased by 3-5 times, leading to diffusion lengths exceeding 7 µm. The enhanced carrier diffusion results from substantial suppression of nonradiative recombination and improves charge collection. Devices using such films achieve reproducible efficiencies reaching 11.2 %, among the best performances for back-contact PSCs. Our findings demonstrate the impact of carrier dynamics on back-contact PSCs and provide the basis for a new route to high-performance back-contact perovskite optoelectronic devices at low cost.

9.
J Am Chem Soc ; 144(15): 6992-7000, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404602

RESUMO

Modifying surfaces using free radical polymerization (FRP) offers a means to incorporate the diverse physicochemical properties of vinyl polymers onto new materials. Here, we harness the universal surface attachment of polydopamine (PDA) to "prime" a range of different surfaces for free radical polymer attachment, including glass, cotton, paper, sponge, and stainless steel. We show that the intrinsic free radical species present in PDA can serve as an anchor point for subsequent attachment of propagating vinyl polymer macroradicals through radical-radical coupling. Leveraging a straightforward, twofold soak-wash protocol, FRP over the PDA-functionalized surfaces results in covalent polymer attachment on both porous and nonporous substrates, imparting new properties to the functionalized materials, including enhanced hydrophobicity, fluorescence, or temperature responsiveness. Our strategy is then extended to covalently incorporate PDA nanoparticles into organo-/hydrogels via radical cross-linking, yielding tunable PDA-polymer composite networks. The propensity of PDA free radicals to quench FRP is studied using in situ 1H nuclear magnetic resonance and electron paramagnetic resonance spectroscopy, revealing a surface area-dependent macroradical scavenging mechanism that underpins PDA-polymer conjugation. By combining the arbitrary surface attachment of PDA with the broad physicochemical properties of vinyl polymers, our strategy provides a straightforward route for imparting unlimited new functionality to practically any surface.


Assuntos
Indóis , Polímeros , Radicais Livres , Indóis/química , Polimerização , Polímeros/química
10.
Adv Mater ; 34(11): e2104186, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34919299

RESUMO

Devices that exploit the quantum properties of materials are widespread, with quantum information processors and quantum sensors showing significant progress. Organic materials offer interesting opportunities for quantum technologies owing to their engineerable spin properties, with spintronic operation and spin resonance magnetic-field sensing demonstrated in research grade devices, as well as proven compatibility with large-scale fabrication techniques. Yet several important challenges remain as moving toward scaling these proof-of-principle quantum devices to larger integrated logic systems or spatially smaller sensing elements, particularly those associated with the variation of quantum properties both within and between devices. Here, spatially resolved magnetoluminescence is used to provide the first 2D map of a hyperfine spin property-the Overhauser field-in traditional organic light-emitting diodes (OLEDs). Intra-device variabilities are found to exceed ≈30% while spatially correlated behavior is exhibited on lengths beyond 7 µm, similar in size to pixels in state-of-the-art active-matrix OLED arrays, which has implications for the reproducibility and integration of organic quantum devices.

11.
Adv Mater ; 34(7): e2104782, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866252

RESUMO

Most of the reported 2D Ruddlesden-Popper (RP) lead halide perovskites with the general formula of An +1 Bn X3 n +1 (n = 1, 2, …) comprise layered perovskites separated by A-site-substituted organic spacers. To date, only a small number of X-site-substituted RP perovskites have been reported. Herein, the first inorganic-cation pseudohalide 2D phase perovskite single crystal, Cs2 Pb(SCN)2 Br2 , is reported. It is synthesized by the antisolvent vapor-assisted crystallization (AVC) method at room temperature. It exhibits a standard single-layer (n = 1) Ruddlesden-Popper structure described in space group of Pmmn (#59) and has a small separation (d = 1.69 Å) between the perovskite layers. The SCN- anions are found to bend the 2D Pb(SCN)2 Br2 framework slightly into a kite-shaped octahedron, limiting the formation of a quasi-2D perovskite structure (n > 1). This 2D single crystal exhibits a reversible first-order phase transformation to 3D CsPbBr3 (Pm3m #221) at 450 K. It has a low exciton binding energy of 160 meV-one of the lowest for 2D perovskites (n = 1). A Cs2 Pb(SCN)2 Br2 -single-crystal photodetector is demonstrated with respectable responsivity of 8.46 mA W-1 and detectivity of ≈1.2 × 1010 Jones at a low bias voltage of 0.5 V.

12.
J Phys Chem A ; 125(33): 7226-7234, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34433272

RESUMO

Molecular chirality can be exploited as a sensitive reporter of the nature of intra- and interchromophore interactions in π-conjugated systems. In this report, we designed an intramolecular singlet fission (iSF)-based pentacene dimer with an axially chiral binaphthyl bridge (2,2'-(2,2'-dimethoxy-[1,1'-binaphthalene]-3,3'-diyl) n-octyl-di-isopropyl silylethynyl dipentacene, BNBP) to utilize its chiroptical response as a marker of iSF chromophore-bridge-chromophore (SFC-ß-SFC) interactions. The axial chirality of the bridge enforces significant one-handed excitonic coupling of the pentacene monomer units; as such, BNBP exhibits significant chiroptical response in the ground and excited states. We analyzed the chiroptical response of BNBP using the exciton coupling method and quadratic response density functional theory calculations to reveal that higher energy singlet transitions in BNBP involve significant delocalization of the electronic density on the bridging binaphthyl group. Our results highlight the promising application of chiroptical techniques to investigate the nature of SFC-ß-SFC interactions that impact singlet fission dynamics.

13.
J Chem Phys ; 151(16): 164104, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675884

RESUMO

Several recent electron spin resonance studies have observed a quintet multiexciton state during the singlet fission process. Here, we provide a general theoretical explanation for the generation of this state by invoking a time-varying exchange coupling between pairs of triplet excitons and subsequently solving the relevant time-varying spin Hamiltonian for different rates at which the exchange coupling varies. We simulate experimental ESR spectra and draw qualitative conclusions about the adiabatic and diabatic transitions between triplet pair spin states.

14.
Nat Chem ; 11(9): 821-828, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406323

RESUMO

Singlet fission-that is, the generation of two triplets from a lone singlet state-has recently resurfaced as a promising process for the generation of multiexcitons in organic systems. Although advances in this area have led to the discovery of modular classes of chromophores, controlling the fate of the multiexciton states has been a major challenge; for example, promoting fast multiexciton generation while maintaining long triplet lifetimes. Unravelling the dynamical evolution of the spin- and energy conversion processes from the transition of singlet excitons to correlated triplet pairs and individual triplet excitons is necessary to design materials that are optimized for translational technologies. Here, we engineer molecules featuring a discrete energy gradient that promotes the migration of strongly coupled triplet pairs to a spatially separated, weakly coupled state that readily dissociates into free triplets. This 'energy cleft' concept allows us to combine the amplification and migration processes within a single molecule, with rapid dissociation of tightly bound triplet pairs into individual triplets that exhibit lifetimes of ~20 µs.

15.
Sci Rep ; 9(1): 5950, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976049

RESUMO

Surface-functionalized nanomaterials are of interest as theranostic agents that detect disease and track biological processes using hyperpolarized magnetic resonance imaging (MRI). Candidate materials are sparse however, requiring spinful nuclei with long spin-lattice relaxation (T1) and spin-dephasing times (T2), together with a reservoir of electrons to impart hyperpolarization. Here, we demonstrate the versatility of the nanodiamond material system for hyperpolarized 13C MRI, making use of its intrinsic paramagnetic defect centers, hours-long nuclear T1 times, and T2 times suitable for spatially resolving millimeter-scale structures. Combining these properties, we enable a new imaging modality, unique to nanoparticles, that exploits the phase-contrast between spins encoded with a hyperpolarization that is aligned, or anti-aligned with the external magnetic field. The use of phase-encoded hyperpolarization allows nanodiamonds to be tagged and distinguished in an MRI based on their spin-orientation alone, and could permit the action of specific bio-functionalized complexes to be directly compared and imaged.

16.
J Am Chem Soc ; 139(36): 12488-12494, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28799752

RESUMO

We have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates. In addition, unlike conjugated dimers, the time constants for singlet fission are relatively insensitive to the interplanar angle between chromophores, since rotation about σ bonds negligibly affects the orbital overlap within the π-bonding network. In the nonconjugated dimer, where the iSF occurs with a time constant >10 ns, comparable to the fluorescence lifetime, we used electron spin resonance spectroscopy to unequivocally establish the formation of triplet-triplet multiexcitons and uncoupled triplet excitons through singlet fission. Together, these studies enable us to articulate the role of the conjugation motif in iSF.

17.
J Vis Exp ; (121)2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28287568

RESUMO

A method for investigating recombination dynamics of photo-induced charge carriers in thin film semiconductors, specifically in photovoltaic materials such as organo-lead halide perovskites is presented. The perovskite film thickness and absorption coefficient are initially characterized by profilometry and UV-VIS absorption spectroscopy. Calibration of both laser power and cavity sensitivity is described in detail. A protocol for performing Flash-photolysis Time Resolved Microwave Conductivity (TRMC) experiments, a non-contact method of determining the conductivity of a material, is presented. A process for identifying the real and imaginary components of the complex conductivity by performing TRMC as a function of microwave frequency is given. Charge carrier dynamics are determined under different excitation regimes (including both power and wavelength). Techniques for distinguishing between direct and trap-mediated decay processes are presented and discussed. Results are modelled and interpreted with reference to a general kinetic model of photoinduced charge carriers in a semiconductor. The techniques described are applicable to a wide range of optoelectronic materials, including organic and inorganic photovoltaic materials, nanoparticles, and conducting/semiconducting thin films.


Assuntos
Lasers , Micro-Ondas , Nanopartículas/química , Semicondutores
18.
Phys Chem Chem Phys ; 18(17): 12043-9, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27067120

RESUMO

Elucidating the decay mechanisms of photoexcited charge carriers is key to improving the efficiency of solar cells based on organo-lead halide perovskites. Here we investigate the spectral dependence (via above-, inter- and sub-bandgap optical excitations) of direct and trap-mediated decay processes in CH3NH3PbI3 using time resolved microwave conductivity (TRMC). We find that the total end-of-pulse mobility is excitation wavelength dependent - the mobility is maximized (172 cm(2) V(-1) s(-1)) when charge carriers are excited by near bandgap light (780 nm) in the low charge carrier density regime (10(9) photons per cm(2)), and is lower for above- and sub-bandgap excitations. Direct recombination is found to occur on the 100-400 ns timescale across excitation wavelengths near and above the bandgap, whereas indirect recombination processes displayed distinct behaviour following above- and sub-bandgap excitations, suggesting the influence of different trap distributions on recombination dynamics.

19.
J Phys Chem Lett ; 6(12): 2367-78, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26266619

RESUMO

Molecular materials afford abundant flexibility in the tunability of physical and electronic properties. As such, they are ideally suited to engineering low-cost, flexible, light-harvesting materials that break away from the single-threshold paradigm. Single-threshold solar cells are capable of harvesting a maximum of 33.7% of incident sunlight, whereas two-threshold cells are capable of energy harvesting efficiencies exceeding 45%. In this Perspective, we provide the theoretical background with which upper efficiency limits for various multiple-threshold solar cell architectures may be calculated and review and discuss various reports that employ processes such as triplet-triplet annihilation and singlet fission in multiple-threshold devices comprised of molecular materials.

20.
J Phys Chem Lett ; 6(15): 3061-6, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26267203

RESUMO

Photochemical upconversion via triplet-triplet annihilation is a promising technology for improving the efficiency of photovoltaic devices. Previous studies have shown that the efficiency of upconversion depends largely on two rate constants intrinsic to the emitting species. Here, we report that one of these rate constants can be altered by deuteration, leading to enhanced upconversion efficiency. For perylene, deuteration decreases the first order decay rate constant by 16 ± 9% at 298 K, which increases the linear upconversion response by 45 ± 21% in the low excitation regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...