Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Intell Syst ; 4(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35757581

RESUMO

Colonoscopies allow surgeons to detect common diseases i.e. colorectal cancer, ulcers and other ailments. However, there is a risk of bleeding in the lower gastrointestinal (GI) tract while maneuvering endoscopes. This may be due to perforations, hemorrhaging, polyps, diverticuli or post-biopsy complications. Thus, it is essential for the surgeon to be able to detect bleeding at the site and evaluate the severity of blood leakage. This paper presents a soft sensor that can detect the presence of blood at the bleeding site during colonoscopies. The sensor consists of optical waveguides that interface with a microfluidic channel. Blood flow causes absorption and scattering of incident light that can be picked up by the optical sensing apparatus via light transmission through the waveguide. The surgeon can be alerted when bleeding occurs through a graphical user interface. The device is compact and measures only 1 mm thick. This allows the sensor to be circumferentially mounted onto a colonoscope at different locations. The sensor is able to record the presence of blood as an optical loss, rapidly detect the presence of blood in under 100 milliseconds as it enters the microchannel, and differentiate between gastric fluid and blood through changes in measured optical loss.

2.
Soft Robot ; 9(4): 754-766, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357810

RESUMO

Lung cancer is one of the deadliest forms of cancers and is often diagnosed by performing biopsies with the use of a bronchoscope. However, this diagnostic procedure is limited in ability to explore deep into the periphery of the lung where cancer can remain undetected. In this study, we present design, modeling, fabrication, and testing of a one degree of freedom soft robot with integrated diagnostic and interventional capabilities as well as vision sensing. The robot can be deployed through the working channel of commercial bronchoscopes or used as a stand-alone system as it integrates a micro camera to provide vision sensing and controls to the periphery of the lung. The small diameter (2.4 mm) of the device allows navigation in branches deeper in the lung, where current devices have limited reachability. We have performed mechanical characterizations of the robotic platform, including blocked force, maximum bending angle, maximum angular velocity, and workspace, and assessed its performance in in vitro and ex vivo experiments. We have developed a computer vision algorithm, and validated it in in vitro conditions, to autonomously align the robot to a selected branch of the lung and aid the clinician (by means of a graphical user interface) during navigation tasks and to perform robot-assisted stabilization in front of a lesion, with automated tracking and alignment.


Assuntos
Neoplasias Pulmonares , Robótica , Algoritmos , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia
3.
IEEE Robot Autom Lett ; 6(3): 5292-5299, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34027062

RESUMO

Colonoscopy is the gold standard for colorectal cancer diagnosis; however, limited instrument dexterity and no sensor feedback can hamper procedure safety and acceptance. We propose a soft robotic sleeve to provide sensor feedback and additional actuation capabilities to improve safety during navigation in colonoscopy. The robot can be mounted around current endoscopic instrumentation as a disposable "add-on", avoiding the need for dedicated or customized instruments and without disrupting current surgical workflow. We focus on design, finite element analysis, fabrication, and experimental characterization and validation of the soft robotic sleeve. The device integrates soft optical sensors to monitor contact interaction forces between the colon and the colonoscope and soft robotic actuators that can be automatically deployed if excessive force is detected, to guarantee pressure redistribution on a larger contact area of the colon. The system can be operated by a surgeon via a graphic user interface that displays contact force values and enables independent or coordinated pressurization of the soft actuators upon demand, in case deemed necessary to aid navigation or distend colon tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...