Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pilot Feasibility Stud ; 9(1): 117, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422659

RESUMO

BACKGROUND: A high proportion of patients diagnosed with schizophrenia-spectrum disorders will at some point in their lives be assessed as not having the capacity to make their own decisions about pharmacological treatment or inpatient care ('capacity'). Few will be helped to regain it before these interventions proceed. This is partly because effective and safe methods to do so are lacking. Our aim is to accelerate their development by testing, for the first time in mental healthcare, the feasibility, acceptability and safety of running an 'Umbrella' trial. This involves running, concurrently and under one multi-site infrastructure, multiple assessor-blind randomised controlled trials, each of which is designed to examine the effect on capacity of improving a single psychological mechanism ('mechanism'). Our primary objectives are to demonstrate feasibility of (i) recruitment and (ii) data retention on the MacArthur Competence Assessment Tool-Treatment (MacCAT-T; planned primary outcome for a future trial) at end-of-treatment. We selected three mechanisms to test: 'self-stigma', low self-esteem and the 'jumping to conclusions' bias. Each is highly prevalent in psychosis, responsive to psychological intervention, and hypothesised to contribute to impaired capacity. METHODS: Sixty participants with schizophrenia-spectrum diagnoses, impaired capacity and one or more mechanism(s) will be recruited from outpatient and inpatient mental health services in three UK sites (Lothian, Scotland; Lancashire and Pennine; North West England). Those lacking capacity to consent to research could take part if the key criteria were met, including either proxy consent (Scotland) or favourable Consultee advice (England). They will be allocated to one of three randomised controlled trials, depending on which mechanism(s) they have. They will then be randomised to receive, over an 8-week period and in addition to treatment as usual (TAU), 6 sessions of either a psychological intervention which targets the mechanism, or 6 sessions of assessment of the causes of their incapacity (control condition). Participants are assessed at 0 (baseline), 8 (end-of-treatment) and 24 (follow-up) weeks post-randomisation using measures of capacity (MacCAT-T), mechanism, adverse events, psychotic symptoms, subjective recovery, quality of life, service use, anxiety, core schemata and depression. Two nested qualitative studies will be conducted; one to understand participant and clinician experiences and one to investigate the validity of MacCAT-T appreciation ratings. DISCUSSION: This will be the first Umbrella trial in mental healthcare. It will produce the first 3 single-blind randomised controlled trials of psychological interventions to support treatment decision-making in schizophrenia-spectrum disorder. Demonstrating feasibility will have significant implications not only for those seeking to support capacity in psychosis, but also for those who wish to accelerate the development of psychological interventions for other conditions. TRIAL REGISTRATION: ClinicalTrials.gov NCT04309435 . Pre-registered on 16 March 2020.

3.
Front Plant Sci ; 13: 1008980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426159

RESUMO

Pseudomonas fuscovaginae is the most prominent bacterial sheath rot pathogen, causing sheath brown rot disease in rice. This disease occurs worldwide and it is characterized by typical necrotic lesions on the sheath, as well as a reduction in the number of emitted panicles and filled grains. P. fuscovaginae has been shown to produce syringotoxin and fuscopeptin cyclic lipopeptides (CLPs), which have been linked to pathogenicity. In this study, we investigated the role of P. fuscovaginae UPB0736 CLPs in plant pathogenicity, antifungal activity and swarming motility. To do so, we sequenced the strain to obtain a single-contig genome and we constructed deletion mutants in the biosynthetic gene clusters responsible for the synthesis of CLPs. We show that UPB0736 produces a third CLP of 13 amino acids, now named asplenin, and we link this CLP with the swarming activity of the strain. We could then show that syringotoxin is particularly active against Rhizoctonia solani in vitro. By testing the mutants in planta we investigated the role of both fuscopeptin and syringotoxin in causing sheath rot lesions. We proved that the presence of these two CLPs considerably affected the number of emitted panicles, although their number was still significantly affected in the mutants deficient in both fuscopeptin and syringotoxin. These results reveal the importance of CLPs in P. fuscovaginae pathogenicity, but also suggest that other pathogenicity factors may be involved.

4.
Front Plant Sci ; 13: 1012636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299787

RESUMO

Despite well-established pathways and metabolites involved in grapevine-Plasmopara viticola interaction, information on the molecules involved in the first moments of pathogen contact with the leaf surface and their specific location is still missing. To understand and localise these molecules, we analysed grapevine leaf discs infected with P. viticola with MSI. Plant material preparation was optimised, and different matrices and solvents were tested. Our data shows that trichomes hamper matrix deposition and the ion signal. Results show that putatively identified sucrose presents a higher accumulation and a non-homogeneous distribution in the infected leaf discs in comparison with the controls. This accumulation was mainly on the veins, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola. Up to our knowledge this is the first time that the localisation of a putatively identified sucrose metabolite was shown to be associated to P. viticola infection sites.

5.
J Am Soc Mass Spectrom ; 33(5): 851-858, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467879

RESUMO

With the recent improvements in ion mobility resolution, it is now possible to separate small protomeric tautomers, called protomers. In larger molecules above 1000 Da such as peptides, a few studies suggest that protomers do exist as well and may contribute to their gas-phase conformational heterogeneity. In this work, we observed a CCS distribution that can be explained by the presence of protomers of surfactin, a small lipopeptide with no basic site. Following preliminary density functional theoretical calculations, several protonation sites in the gas phase were energetically favorable in positive ionization mode. Experimentally, at least three near-resolved IM peaks were observed in positive ionization mode, while only one was detected in negative ionization mode. These results were in good agreement with the DFT predictions. CID breakdown curve analysis after IM separation showed different inflection points (CE50) suggesting that different intramolecular interactions were implied in the stabilization of the structures of surfactin. The fragment ratio observed after collision-induced fragmentation was also different, suggesting different ring-opening localizations. All these observations support the presence of protomers on the cyclic peptide moieties of the surfactin. These data strongly suggest that protomeric tautomerism can still be observed on molecules above 1000 Da if the IM resolving power is sufficient. It also supports that the proton localization involves a change in the 3D structure that can affect the experimental CCS and the fragmentation channels of such peptides.


Assuntos
Peptídeos Cíclicos , Prótons , Lipopeptídeos , Conformação Molecular , Peptídeos Cíclicos/química , Subunidades Proteicas/química
6.
Astrobiology ; 22(6): 735-754, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333546

RESUMO

Ultraviolet (UV)-screening compounds represent a substantial asset for the survival of cyanobacteria in extreme environments exposed to high doses of UV radiations on modern and early Earth. Among these molecules, the halochromic pigment gloeocapsin remains poorly characterized and studied. In this study, we identified a gloeocapsin-producing cultivable cyanobacteria: the strain Phormidesmis nigrescens ULC007. We succeeded to extract, to partially purify, and to compare the dark blue pigment from both the ULC007 culture and an environmental Gloeocapsa alpina dominated sample. FT-IR and Raman spectra of G. alpina and P. nigrescens ULC007 pigment extracts strongly suggested a common backbone structure. The high-pressure liquid chromatography-UV-MS/MS analysis of the ULC007 pigment extract allowed to narrow down the molecular formula of gloeocapsin to potentially five candidates within three classes of halochromic molecules: anthraquinone derivatives, coumarin derivatives, and flavonoids. With the discovery of gloeocapsin in P. nigrescens, the production of this pigment is now established for three lineages of cyanobacteria (including G. alpina, P. nigrescens, and Solentia paulocellulare) that belong to three distinct orders (Chroococcales, Pleurocapsales, Synechoccocales), inhabiting very diverse environments. This suggests that gloeocapsin production was a trait of their common ancestor or was acquired by lateral gene transfer. This work represents an important step toward the elucidation of the structure of this enigmatic pigment and its biosynthesis, and it potentially provides a new biosignature for ancient cyanobacteria. It also gives a glimpse on the evolution of UV protection strategies, which are relevant for early phototrophic life on Earth and possibly beyond.


Assuntos
Cianobactérias , Exobiologia , Cianobactérias/química , Pigmentos Biológicos , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem
7.
Drug Discov Today Technol ; 39: 81-88, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906328

RESUMO

Mass spectrometry imaging (MSI) has become a powerful method for mapping metabolite distribution in a tissue. Applied to bacterial colonies, MSI has a bright future, both for the discovery of new bioactive compounds and for a better understanding of bacterial antibiotic resistance mechanisms. Coupled with separation techniques such as ion mobility mass spectrometry (IM-MS), the identification of metabolites directly on the image is now possible and does not require additional analysis such as HPLC-MS/MS. In this article, we propose to apply a semi-targeted workflow for rapid IM-MSI data analysis focused on the search for bioactive compounds. First, chemically-related compounds showing a repetitive mass unit (i.e. lipids and lipopeptides) were targeted based on the Kendrick mass defect analysis. The detected groups of potentially bioactive compounds were then confirmed by fitting their measured ion moibilites to their measured m/z values. Using both their m/z and ion mobility values, the selected groups of compounds were identified using the available databases and finally their distribution was observed on the image. Using this workflow on a co-culture of bacteria, we were able to detect and localize bioactive compounds involved in the microbial interaction.


Assuntos
Lipopeptídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Microbiol Spectr ; 9(3): e0203821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878336

RESUMO

Some Bacillus species, such as B. velezensis, are important members of the plant-associated microbiome, conferring protection against phytopathogens. However, our knowledge about multitrophic interactions determining the ecological fitness of these biocontrol bacteria in the competitive rhizosphere niche is still limited. Here, we investigated molecular mechanisms underlying interactions between B. velezensis and Pseudomonas as a soil-dwelling competitor. Upon their contact-independent in vitro confrontation, a multifaceted macroscopic outcome was observed and characterized by Bacillus growth inhibition, white line formation in the interaction zone, and enhanced motility. We correlated these phenotypes with the production of bioactive secondary metabolites and identified specific lipopeptides as key compounds involved in the interference interaction and motile response. Bacillus mobilizes its lipopeptide surfactin not only to enhance motility but also to act as a chemical trap to reduce the toxicity of lipopeptides formed by Pseudomonas. We demonstrated the relevance of these unsuspected roles of lipopeptides in the context of competitive tomato root colonization by the two bacterial genera. IMPORTANCE Plant-associated Bacillus velezensis and Pseudomonas spp. represent excellent model species as strong producers of bioactive metabolites involved in phytopathogen inhibition and the elicitation of plant immunity. However, the ecological role of these metabolites during microbial interspecies interactions and the way their expression may be modulated under naturally competitive soil conditions has been poorly investigated. Through this work, we report various phenotypic outcomes from the interactions between B. velezensis and 10 Pseudomonas strains used as competitors and correlate them with the production of specific metabolites called lipopeptides from both species. More precisely, Bacillus overproduces surfactin to enhance motility, which also, by acting as a chemical trap, reduces the toxicity of other lipopeptides formed by Pseudomonas. Based on data from interspecies competition on plant roots, we assume this would allow Bacillus to gain fitness and persistence in its natural rhizosphere niche. The discovery of new ecological functions for Bacillus and Pseudomonas secondary metabolites is crucial to rationally design compatible consortia, more efficient than single-species inoculants, to promote plant health and growth by fighting economically important pathogens in sustainable agriculture.


Assuntos
Bacillus/metabolismo , Lipopeptídeos/metabolismo , Pseudomonas/metabolismo , Microbiologia do Solo , Bacillus/crescimento & desenvolvimento , Interações Microbianas , Metabolismo Secundário
9.
Anal Bioanal Chem ; 413(10): 2831-2844, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33517478

RESUMO

MALDI mass spectrometry imaging (MSI) allows the mapping and the tentative identification of compounds based on their m/z value. In typical MSI, a spectrum is taken at incremental 2D coordinates (pixels) across a sample surface. Single pixel mass spectra show the resolving power of the mass analyzer. Mass shift, i.e., variations of the m/z of the same ion(s), may occur from one pixel to another. The superposition of shifted masses from individual pixels peaks apparently degrades the resolution and the mass accuracy in the average spectrum. This leads to low confidence annotations and biased localization in the image. Besides the intrinsic performances of the analyzer, the sample properties (local composition, thickness, matrix deposition) and the calibration method are sources of mass shift. Here, we report a critical analysis and recommendations to mitigate these sources of mass shift. Mass shift 2D distributions were mapped to illustrate its effect and explore systematically its origin. Adapting the sample preparation, carefully selecting the data acquisition settings, and wisely applying post-processing methods (i.e., m/z realignment or individual m/z recalibration pixel by pixel) are key factors to lower the mass shift and to improve image quality and annotations. A recommended workflow, resulting from a comprehensive analysis, was successfully applied to several complex samples acquired on both MALDI ToF and MALDI FT-ICR instruments.

10.
Anal Chem ; 91(20): 13112-13118, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509388

RESUMO

Kendrick mass defect (KMD) analysis is widely used for helping the detection and identification of chemically related compounds based on exact mass measurements. We report here the use of KMD as a criterion for filtering complex mass spectrometry data set. The method allow automated, easy and efficient data processing, enabling the reconstruction of 2D distributions of families of homologous compounds from MSI images. We show that KMD filtering, based on in-house software, is suitable and robust for high resolution (full width at half-maximum, fwhm, at m/z 410 of 20 000) and very high-resolution (fwhm, at m/z 410 of 160 000) MSI data. This method has been successfully applied to two different types of samples, bacteria cocultures, and brain tissue sections.


Assuntos
Compostos Orgânicos/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/estatística & dados numéricos , Algoritmos , Animais , Bacillus/química , Encéfalo/diagnóstico por imagem , Camundongos , Peso Molecular , Compostos Orgânicos/química , Estudo de Prova de Conceito , Pseudomonas/química , Software
11.
Metab Eng ; 51: 9-19, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30227251

RESUMO

CHO cells have become the favorite expression system for large scale production of complex biopharmaceuticals. However, industrial strategies for upstream process development are based on empirical results, due to a lack of fundamental understanding of intracellular activities. Genome scale models of CHO cells have been reconstructed to provide an economical way of analyzing and interpreting large-omics datasets, since they add cellular context to the data. Here the most recently available CHO-DG44 genome-scale specific model was manually curated and tailored to the metabolic profile of cell lines used for industrial protein production, by modifying 601 reactions. Generic changes were applied to simplify the model and cope with missing constraints related to regulatory effects as well as thermodynamic and osmotic forces. Cell line specific changes were related to the metabolism of high-yielding production cell lines. The model was semi-constrained with 24 metabolites measured on a daily basis in n = 4 independent industrial 2L fed batch cell culture processes for a therapeutic antibody production. This study is the first adaptation of a genome scale model for CHO cells to an industrial process, that successfully predicted cell phenotype. The tailored model predicted accurately both the exometabolomics data (r2 ≥ 0.8 for 96% of the considered metabolites) and growth rate (r2 = 0.91) of the industrial cell line. Flux distributions at different days of the process were analyzed for validation and suggestion of strategies for medium optimization. This study shows how to adapt a genome scale model to an industrial process and sheds light on the metabolic specificities of a high production process. The curated genome scale model is a great tool to gain insights into intracellular fluxes and to identify possible bottlenecks impacting cell performances during production process. The general use of genome scale models for modeling industrial recombinant cell lines is a long-term investment that will highly benefit process development and speed up time to market.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Células CHO/metabolismo , Indústria Química , Genoma/genética , Aminoácidos/metabolismo , Animais , Simulação por Computador , Cricetinae , Cricetulus , Meios de Cultura , Metabolismo dos Lipídeos/genética , Engenharia Metabólica , Redes e Vias Metabólicas , Metabolômica , Modelos Biológicos , Modelos Teóricos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...