Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366381

RESUMO

Atom probe tomography requires needle-shaped specimens with a diameter typically below 100 nm, making them both very fragile and reactive, and defects (notches at grain boundaries or precipitates) are known to affect the yield and data quality. The use of a conformal coating directly on the sharpened specimen has been proposed to increase yield and reduce background. However, to date, these coatings have been applied ex situ and mostly are not uniform. Here, we report on the controlled focused-ion beam in situ deposition of a thin metal film on specimens immediately after specimen preparation. Different metallic targets e.g. Cr were attached to a micromanipulator via a conventional lift-out method and sputtered using Ga or Xe ions. We showcase the many advantages of coating specimens from metallic to nonmetallic materials. We have identified an increase in data quality and yield, an improvement of the mass resolution, as well as an increase in the effective field-of-view. This wider field-of-view enables visualization of the entire original specimen, allowing to detect the complete surface oxide layer around the specimen. The ease of implementation of the approach makes it very attractive for generalizing its use across a very wide range of atom probe analyses.

3.
Bioact Mater ; 27: 447-460, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37168023

RESUMO

In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn - Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 µm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a-1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed.

4.
Micros Today ; 29(6): 42-48, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511770

RESUMO

In response to the requirements imposed by the COVID-19 pandemic in 2020, we developed a remote learning undergraduate workshop for 44 students at the University of Newcastle by embedding scanning electron microscope (SEM) images of Maratus (Peacock) spiders into the MyScope Explore environment. The workshop session had two main components: 1) to use the online MyScope Explore tool to virtually image scales with structural color and pigmented color on Maratus spiders; 2) to join a live SEM session via Zoom to image an actual Maratus spider. In previous years, the undergraduate university students attending this annual workshop would enter the Microscopy Facility at the University of Newcastle to image specimens with SEM; however, in 2020 the Microscopy Facility was closed to student visitors, and this virtual activity was developed in order to proceed with the educational event. The program was highly successful and constitutes a platform that can be used in the future by universities for teaching microscopy remotely.

5.
Science ; 367(6474): 171-175, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31919217

RESUMO

Hydrogen embrittlement of high-strength steel is an obstacle for using these steels in sustainable energy production. Hydrogen embrittlement involves hydrogen-defect interactions at multiple-length scales. However, the challenge of measuring the precise location of hydrogen atoms limits our understanding. Thermal desorption spectroscopy can identify hydrogen retention or trapping, but data cannot be easily linked to the relative contributions of different microstructural features. We used cryo-transfer atom probe tomography to observe hydrogen at specific microstructural features in steels. Direct observation of hydrogen at carbon-rich dislocations and grain boundaries provides validation for embrittlement models. Hydrogen observed at an incoherent interface between niobium carbides and the surrounding steel provides direct evidence that these incoherent boundaries can act as trapping sites. This information is vital for designing embrittlement-resistant steels.

6.
Microsc Microanal ; 25(2): 410-417, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30757982

RESUMO

In this work, we demonstrate a new system for the examination of gas interactions with surfaces via atom probe tomography. This system provides capability of examining the surface and subsurface interactions of gases with a wide range of specimens, as well as a selection of input gas types. This system has been primarily developed to aid the investigation of hydrogen interactions with metallurgical samples, to better understand the phenomenon of hydrogen embrittlement. In its current form, it is able to operate at pressures from 10-6 to 1000 mbar (abs), can use a variety of gasses, and is equipped with heating and cryogenic quenching capabilities. We use this system to examine the interaction of hydrogen with Pd, as well as the interaction of water vapor and oxygen in Mg samples.

7.
Microsc Microanal ; 24(4): 342-349, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30175704

RESUMO

Understanding oxide-metal interfaces is crucial to the advancement of materials and components for many industries, most notably for semiconductor devices and power generation. Atom probe tomography provides three-dimensional, atomic scale information about chemical composition, making it an excellent technique for interface analysis. However, difficulties arise when analyzing interfacial regions due to trajectory aberrations, such as local magnification, and reconstruction artifacts. Correlative microscopy and field simulation techniques have revealed that nonuniform evolution of the tip geometry, caused by heterogeneous field evaporation, is partly responsible for these artifacts. Here we attempt to understand these trajectory artifacts through a study of the local evaporation field conditions. With a better understanding of the local evaporation field, it may be possible to account for some of the local magnification effects during the reconstruction process, eliminating these artifacts before data analysis.

8.
Ultramicroscopy ; 160: 163-167, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26521162

RESUMO

Here, we present a new method that utilises shadow masks in a broad ion beam system to prepare atom probe samples. It is particularly suited to non-conductors and materials with surface layers such as surface oxides, implanted layers or thin films. This new approach bypasses the focused ion beam (FIB) lift-out step, increasing the sample throughput, dramatically reducing the required FIB beam time and decreasing the complexity of sample preparation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...