Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Oncol Hematol ; 201: 104425, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38909876

RESUMO

PURPOSE: To identify causes of balance impairment in children undergoing treatment for cancer and childhood cancer survivors. METHODS: A systematic search was performed according to PRISMA guidelines. Studies were included if participants were 0-19 years of age with a current/past diagnosis of cancer, an objective balance measure was reported, and a cause of balance impairment was either stated or implied. RESULTS: The 64 full text studies included identified balance impairments as sequelae secondary to CNS tumors, and/or as an effect of medical treatment including chemotherapy, radiation, and/or surgery. Cancer treatment can result in damage to the visual, vestibular and/or somatosensory systems which in turn can contribute to balance dysfunction. CONCLUSIONS: Balance impairments were caused by the cancer itself or the result of medical treatment. Oncology professionals are integral in recognition and treatment of factors affecting balance impairments in childhood cancer; however, further research is needed to identify interventions targeting specific causes of balance impairment.


Assuntos
Neoplasias , Equilíbrio Postural , Transtornos de Sensação , Humanos , Criança , Neoplasias/complicações , Transtornos de Sensação/etiologia , Transtornos de Sensação/diagnóstico , Adolescente , Sobreviventes de Câncer , Pré-Escolar , Lactente
2.
Exp Neurol ; 374: 114692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244885

RESUMO

Using cell grafting to direct glia-based repair mechanisms in adult CNS injuries represents a potential therapeutic strategy for supporting functional neural parenchymal repair. However, glia repair directed by neural progenitor cell (NPC) grafts is dramatically altered by increasing lesion size, severity, and mode of injury. To address this, we studied the interplay between astrocyte differentiation and cell proliferation of NPC in vitro to generate proliferating immature astrocytes (ImA) using hysteretic conditioning. ImA maintain proliferation rates at comparable levels to NPC but showed robust immature astrocyte marker expression including Gfap and Vimentin. ImA demonstrated enhanced resistance to myofibroblast-like phenotypic transformations upon exposure to serum enriched environments in vitro compared to NPC and were more effective at scratch wound closure in vitro compared to quiescent astrocytes. Glia repair directed by ImA at acute ischemic striatal stroke lesions was equivalent to NPC but better than quiescent astrocyte grafts. While ischemic injury environments supported enhanced survival of grafts compared to healthy striatum, hemorrhagic lesions were hostile towards both NPC and ImA grafts leading to poor survival and ineffective modulation of natural wound repair processes. Our findings demonstrate that lesion environments, rather than transcriptional pre-graft states, determine the survival, cell-fate, and glia repair competency of cell grafts applied to acute CNS injuries.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Células-Tronco Neurais , Acidente Vascular Cerebral , Humanos , Astrócitos/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral Hemorrágico/metabolismo , Acidente Vascular Cerebral Hemorrágico/patologia , Células-Tronco Neurais/patologia , Acidente Vascular Cerebral/cirurgia , Acidente Vascular Cerebral/metabolismo , Diferenciação Celular
3.
Rehabil Oncol ; 41(4): 215-218, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38524881
4.
Epilepsia ; 61(5): 892-902, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32301507

RESUMO

OBJECTIVE: BRD2 is a human gene repeatedly linked to and associated with juvenile myoclonic epilepsy (JME). Here, we define the developmental stage when increased seizure susceptibility first manifests in heterozygous Brd2+/- mice, an animal model of JME. We wanted to determine (1) whether seizure susceptibility correlates with the proven decrease of γ-aminobutyric acidergic (GABAergic) neuron numbers and (2) whether the seizure phenotype can be affected by sex hormones. METHODS: Heterozygous (Brd2+/-) and wild-type (wt) mice of both sexes were tested for flurothyl-induced seizure susceptibility at postnatal day 15 (P15; wt, n = 13; Brd2+/-, n = 20), at P30 (wt, n = 20; Brd2+/-, n = 20), and in adulthood (5-6 months of age; wt, n = 10; Brd2+/-, n = 12). We measured latency to clonic and tonic-clonic seizure onset (flurothyl threshold). We also compared relative density of parvalbumin-positive (PVA+) and GAD67+ GABA neurons in the striatum and primary motor (M1) neocortex of P15 (n = 6-13 mice per subgroup) and P30 (n = 7-10 mice per subgroup) mice. Additional neonatal Brd2+/- mice were injected with testosterone propionate (females) or formestane (males) and challenged with flurothyl at P30. RESULTS: P15 Brd2+/- mice showed no difference in seizure susceptibility compared to P15 wt mice. However, even at this early age, Brd2+/- mice showed fewer PVA+ neurons in the striatum and M1 neocortex. Compared to wt, the striatum in Brd2+/- mice showed an increased proportion of immature PVA+ neurons, with smaller cell bodies and limited dendritic arborization. P30 Brd2+/- mice displayed increased susceptibility to flurothyl-induced clonic seizures compared to wt. Both genotype and sex strongly influenced the density of PVA+ neurons in the striatum. Susceptibility to clonic seizures remained increased in adult Brd2+/- mice, and additionally there was increased susceptibility to tonic-clonic seizures. In P30 females, neonatal testosterone reduced the number of flurothyl-induced clonic seizures. SIGNIFICANCE: A decrease in striatal PVA+ GABAergic neurons developmentally precedes the onset of increased seizure susceptibility and likely contributes to the expression of the syndrome.


Assuntos
Flurotila/farmacologia , Epilepsia Mioclônica Juvenil/patologia , Neurônios/patologia , Parvalbuminas/metabolismo , Convulsões/induzido quimicamente , Androstenodiona/análogos & derivados , Androstenodiona/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Epilepsia Mioclônica Juvenil/induzido quimicamente , Neurônios/efeitos dos fármacos , Convulsões/patologia , Propionato de Testosterona/farmacologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA