Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 24(43): 7900-7904, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36269561

RESUMO

One novel brominated nocardiopsistin D (1) and two new sulfur-containing nocardiopsistins E-F (2-3) were identified from Nocardiopsis sp. HB-J378. The biosynthetic gene cluster ncd featuring a brominase was identified. Compounds 1-3 exhibited significant anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activities with minimum inhibitory concentrations (MICs) of 0.098, 3.125, and 0.195 µg/mL, respectively. The single bromination in 1 drastically enhanced the anti-MRSA activity by 128-fold without altering cell toxicity and acquired new activities against the bacterial pathogens vancomycin-resistant S. aureus (VRSA), Enterococcus faecium, and Bacillus cereus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Resistência a Vancomicina , Staphylococcus aureus , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Enxofre/farmacologia
2.
FEMS Microbiol Ecol ; 98(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35641184

RESUMO

Host-specific microbial communities thrive within sponge tissues and this association between sponge and associated microbiota may be driven by the organohalogen chemistry of the sponge animal. Several sponge species produce diverse organobromine secondary metabolites (e.g. brominated phenolics, indoles, and pyrroles) that may function as a chemical defense against microbial fouling, infection or predation. In this study, anaerobic cultures prepared from marine sponges were amended with 2,6-dibromophenol as the electron acceptor and short chain organic acids as electron donors. We observed reductive dehalogenation from diverse sponge species collected at disparate temperate and tropical waters suggesting that biogenic organohalides appear to enrich for populations of dehalogenating microorganisms in the sponge animal. Further enrichment by successive transfers with 2,6-dibromophenol as the sole electron acceptor demonstrated the presence of dehalogenating bacteria in over 20 sponge species collected from temperate and tropical ecoregions in the Atlantic and Pacific Oceans and the Mediterranean Sea. The enriched dehalogenating strains were closely related to Desulfoluna spongiiphila and Desulfoluna butyratoxydans, suggesting a cosmopolitan association between Desulfoluna spp. and various marine sponges. In vivo reductive dehalogenation in intact sponges was also demonstrated. Organobromide-rich sponges may thus provide a specialized habitat for organohalide-respiring microbes and D. spongiiphila and/or its close relatives are responsible for reductive dehalogenation in geographically widely distributed sponge species.


Assuntos
Microbiota , Poríferos , Anaerobiose , Animais , Bactérias/genética , Mar Mediterrâneo , Filogenia , Poríferos/microbiologia
3.
Mar Drugs ; 19(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34677467

RESUMO

Production of sponge-derived bioactive compounds in vitro has been proposed as an alternative to wild harvest, aquaculture, and chemical synthesis to meet the demands of clinical drug development and manufacture. Until recently, this was not possible because there were no marine invertebrate cell lines. Recent breakthroughs in the development of sponge cell lines and rapid cell division in improved nutrient media now make this approach a viable option. We hypothesized that three-dimensional (3-D) cell cultures would better represent how sponges function in nature, including the production of bioactive compounds. We successfully cultured sponge cells in 3-D matrices using FibraCel® disks, thin hydrogel layers, and gel microdroplets (GMDs). For in vitro production of bioactive compounds, the use of GMDs is recommended. Nutrients and sponge products rapidly diffuse into and out of the 3-D matrix, the GMDs may be scaled up in spinner flasks, and cells and/or secreted products can be easily recovered. Research on scale-up and production is in progress in our laboratory.


Assuntos
Aquicultura , Produtos Biológicos/metabolismo , Poríferos , Animais , Organismos Aquáticos , Biotecnologia
4.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632867

RESUMO

The genome sequence of the Forcepia sponge-derived bacterium Streptomyces sp. strain HB-N217 was determined, with approximately 8.25 Mbp and a G+C content of 72.1%. Thirty biosynthetic gene clusters that bear the capability to produce secondary metabolites were predicted. The results will aid marine natural product chemistry and sponge-microbe association studies.

5.
PLoS One ; 15(10): e0236305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33105476

RESUMO

The Indian River Lagoon, located on the east coast of Florida, USA, is an Estuary of National Significance and an important economic and ecological resource. The Indian River Lagoon faces several environmental pressures, including freshwater discharges through the St. Lucie Estuary; accumulation of anoxic, fine-grained, organic-rich sediment; and metal contamination from agriculture and marinas. Although the Indian River Lagoon has been well-studied, little is known about its microbial communities; thus, a two-year 16S amplicon sequencing study was conducted to assess the spatiotemporal changes of the sediment bacterial and archaeal groups. In general, the Indian River Lagoon exhibited a prokaryotic community that was consistent with other estuarine studies. Statistically different communities were found between the Indian River Lagoon and St. Lucie Estuary due to changes in porewater salinity causing microbes that require salts for growth to be higher in the Indian River Lagoon. The St. Lucie Estuary exhibited more obvious prokaryotic seasonality, such as a higher relative abundance of Betaproteobacteriales in wet season and a higher relative abundance of Flavobacteriales in dry season samples. Distance-based linear models revealed these communities were more affected by changes in total organic matter and copper than changes in temperature. Anaerobic prokaryotes, such as Campylobacterales, were more associated with high total organic matter and copper samples while aerobic prokaryotes, such as Nitrosopumilales, were more associated with low total organic matter and copper samples. This initial study fills the knowledge gap on the Indian River Lagoon bacterial and archaeal communities and serves as important data for future studies to compare to determine possible future changes due to human impacts or environmental changes.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Células Procarióticas/classificação , Rios/microbiologia , Poluentes Químicos da Água/análise , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Estuários , Florida , Sedimentos Geológicos/análise
6.
Protist ; 171(3): 125739, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32535352

RESUMO

'Flagship' ciliates were investigated from soil samples collected in Florida, USA. This was undertaken to determine if species thought to be restricted to a given world region could be uncovered from similar habitats in a novel location, e.g. another continent. Two species of Condylostomides were discovered, and recorded from the North American continent for the first time. Condylostomides etoschensis was known only from Africa, but was found to be thriving in a Florida study site. An 18S rDNA sequence for this species was determined for the first time. Also discovered from the same study site was the ciliate Condylostomides coeruleus, previously known only from Central and South America. These two 'flagship' ciliates were found in the same habitat, from a continent well outside of their previously recorded biogeographies. Molecular sequencing and microscopy investigations were conducted to form the baseline for future work within this genus. Soil ciliates can obtain large population numbers and form cysts and are therefore likely able to disperse globally. These new records provide additional evidence that large distances, even between continents, do not hinder microbes from thriving globally. The absence of these conspicuously-colored gold and blue ciliates from previous studies is likely due to undersampling, rather than to any physical barriers.


Assuntos
Cilióforos , Filogenia , Microbiologia do Solo , Cilióforos/classificação , Cilióforos/isolamento & purificação , Cistos , Florida , América do Norte , Filogeografia , RNA Ribossômico 18S/genética
7.
Trop Med Infect Dis ; 4(3)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337089

RESUMO

It is important to discover novel antimalarial pharmacophores because of the widespread emergence of Plasmodium falciparum isolates resistant to the available drugs. Secondary metabolites derived from microbes associated with marine invertebrates are a valuable resource for the discovery of novel drug leads. However, the potential of marine microbes as a source of antimalarials has not been explored. We investigated the promise of marine microorganisms for the production of antimalarial activities by testing 2365 diverse microbial extracts using phenotypic screening of a multidrug resistant chloroquine resistant P. falciparum strain. We conducted counter screening against mammalian cells for the 317 active extracts that exhibited more than 70% inhibition at 1 µg/mL. The screen identified 17 potent bioactive leads from a broad range of taxa. Our results establish that the marine microbiome is a rich source of antiplasmodial compounds that warrants in depth exploration.

8.
Synth Syst Biotechnol ; 3(4): 246-251, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30417139

RESUMO

Marine natural products have become an increasingly important source of new drug leads during recent years. In an attempt to identify novel anti-microbial natural products by bioprospecting deep-sea Actinobacteria, three new angucyclines, nocardiopsistins A-C, were isolated from Nocardiopsis sp. strain HB-J378. Notably, the supplementation of the rare earth salt Lanthanum chloride (LaCl3) during fermentation of HB-J378 significantly increased the yield of these angucyclines. The structures of nocardiopsistins A-C were identified by 1D and 2D NMR and HR-MS data. Nocardiopsistins A-C have activity against MRSA (methicillin-resistant Staphylococcus aureus) with MICs of 3.12-12.5 µg/mL; the potency of nocardiopsistin B is similar to that of the positive control, chloramphenicol. Bioinformatic analysis of the draft genome of HB-J378 identified a set of three core genes in a biosynthetic gene cluster that encode a typical aromatic or type II polyketide synthase (PKS) system, including ketoacyl:ACP synthase α-subunit (KSα), ß-subunit (KSß) and acyl carrier protein (ACP). The production of nocardiopsistins A-C was abolished when the three genes were knocked out, indicating their indispensable role in the production of nocardiopsistins.

9.
Front Microbiol ; 9: 787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760684

RESUMO

The global prevalence of drug resistance has created an urgent need for the discovery of novel anti-infective drugs. The major source of antibiotics in current clinical practice is terrestrial actinobacteria; the less-exploited deep-sea actinobacteria may serve as an unprecedented source of novel natural products. In this study, we evaluated 50 actinobacteria strains derived from diverse deep water sponges and environmental niches for their anti-microbial activities against a panel of pathogens including Candida albicans, Clostridium difficile, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa. More than half of the tested strains (27) were identified as active in at least one assay. The rare earth salt lanthanum chloride (LaCl3) was shown to be as an effective elicitor. Among the 27 strains, the anti-microbial activity of 15 were induced or enhanced by the addition of LaCl3. This part of study focused on one strain R818, in which potent antifungal activity was induced by the addition of LaCl3. We found that the LaCl3-activated metabolites in R818 are likely antimycin-type compounds. One of them, compound 1, has been purified. Spectroscopic analyses including HR-MS and 1D NMR indicated that this compound is urauchimycin D. The antifungal activity of compound 1 was confirmed with a minimal inhibitory concentration (MIC) of 25 µg/mL; the purified compound also showed a moderate activity against C. difficile. Additional notable strains are: strain N217 which showed both antifungal and antibacterial (including P. aeruginosa) activities and strain M864 which showed potent activity against C. difficile with an MIC value (0.125 µg/mL) lower than those of vancomycin and metronidazole. Our preliminary studies show that deep-sea actinobacteria is a promising source of anti-infective natural products.

10.
Genome Announc ; 5(5)2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153886

RESUMO

The proteobacterium Alteromonas sp. strain V450 was isolated from the Atlantic deep-sea sponge Leiodermatium sp. Here, we report the draft genome sequence of this strain, with a genome size of approx. 4.39 Mb and a G+C content of 44.01%. The results will aid deep-sea microbial ecology, evolution, and sponge-microbe association studies.

11.
Mar Drugs ; 15(1)2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28085024

RESUMO

A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines.


Assuntos
Alcaloides Indólicos/química , Poríferos/química , Animais , Linhagem Celular Tumoral , Humanos , Alcaloides Indólicos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Pirazinas/química , Pirazinas/farmacologia , Água do Mar
12.
Emerg Infect Dis ; 22(12): 2063-2069, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27869614

RESUMO

Cutaneous granulomas in dolphins were believed to be caused by Lacazia loboi, which also causes a similar disease in humans. This hypothesis was recently challenged by reports that fungal DNA sequences from dolphins grouped this pathogen with Paracoccidioides brasiliensis. We conducted phylogenetic analysis of fungi from 6 bottlenose dolphins (Tursiops truncatus) with cutaneous granulomas and chains of yeast cells in infected tissues. Kex gene sequences of P. brasiliensis from dolphins showed 100% homology with sequences from cultivated P. brasiliensis, 73% with those of L. loboi, and 93% with those of P. lutzii. Parsimony analysis placed DNA sequences from dolphins within a cluster with human P. brasiliensis strains. This cluster was the sister taxon to P. lutzii and L. loboi. Our molecular data support previous findings and suggest that a novel uncultivated strain of P. brasiliensis restricted to cutaneous lesions in dolphins is probably the cause of lacaziosis/lobomycosis, herein referred to as paracoccidioidomycosis ceti.


Assuntos
Doenças dos Animais/microbiologia , Dermatomicoses/veterinária , Golfinhos , Granuloma/veterinária , Paracoccidioides , Paracoccidioidomicose/veterinária , Doenças dos Animais/patologia , Animais , Sequência de Bases , Biópsia , DNA Fúngico , Paracoccidioides/classificação , Paracoccidioides/genética , Paracoccidioides/isolamento & purificação , Filogenia
13.
Med Mycol ; 54(6): 659-65, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27118803

RESUMO

Lobomycosis (lacaziosis) is a chronic, granulomatous, fungal infection of the skin and subcutaneous tissues of humans and dolphins. To date, the causative agent, the yeast-like organism Lacazia loboi, has not been grown in the laboratory, and there have been no recent reports describing attempts to culture the organism. As a result, studies on the efficacy of therapeutics and potential environmental reservoirs have not been conducted. Therefore, the objective of the current study was to utilize both classical and novel microbiological methods in order to stimulate growth of Lacazia cells collected from dolphin lesions. This included the experimental inoculation of novel media, cell culture, and the use of artificial skin matrices. Although unsuccessful, the methods and results of this study provide important insight into new approaches that could be utilized in future investigations of this elusive organism.


Assuntos
Golfinho Nariz-de-Garrafa/microbiologia , Lacazia/crescimento & desenvolvimento , Lacazia/isolamento & purificação , Lobomicose/veterinária , Técnicas Microbiológicas/métodos , Animais , Oceano Atlântico , Granuloma/patologia , Histocitoquímica , Lobomicose/microbiologia , Lobomicose/patologia , Microscopia
14.
Microb Ecol ; 71(1): 5-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26687489

RESUMO

As the foundations of food webs, protozoa are essential to the success of an ecological system. These organisms are often overlooked, and research in the Americas is sparse. Recent samplings conducted in freshwater canals and ponds in Florida, USA, have revealed Loxodes rex, an alleged endemic ciliate species. Originally described as endemic to tropical Africa, L. rex has been considered a prime candidate for proof of microbial endemism. Our studies have shown this giant, non-encysting ciliate to be thriving in subtropical Florida. Our observations are novel and include both the first record of occurrence for the Americas and the first high-quality in vivo images for this charismatic species.


Assuntos
Cilióforos/isolamento & purificação , Água Doce/parasitologia , Tamanho Corporal , Cilióforos/crescimento & desenvolvimento , Florida
15.
Front Microbiol ; 5: 581, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25408689

RESUMO

Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

16.
Biochim Biophys Acta ; 1839(1): 13-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24291638

RESUMO

NPAS4 is a brain restricted, activity-induced transcription factor which regulates the expression of inhibitory synapse genes to control homeostatic excitatory/inhibitory balance in neurons. NPAS4 is required for normal social interaction and contextual memory formation in mice. Protein and mRNA expression of NPAS4 is tightly coupled to neuronal depolarization and most prevalent in the cortical and hippocampal regions in the brain, however the precise mechanisms by which the NPAS4 gene is controlled remain unexplored. Here we show that expression of NPAS4 mRNA is actively repressed by RE-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) in embryonic stem cells and non-neuronal cells by binding multiple sites within the promoter and Intron I of NPAS4. Repression by REST also appears to correlate with the binding of the zinc finger DNA binding protein CTCF within Intron I of NPAS4. In addition, we show that the 3' untranslated region (3'UTR) of NPAS4 can be targeted by two microRNAs, miR-203 and miR-224 to further regulate its expression. miR-224 is a midbrain/hypothalamus enriched microRNA which is expressed from an intron within the GABAA receptor epsilon (GABRE) gene and may further regionalize NPAS4 expression. Our results reveal REST and microRNA dependent mechanisms that restrict NPAS4 expression to the brain.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Proteínas Repressoras/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Fator de Ligação a CCCTC , Células HEK293 , Humanos , Íntrons , Camundongos , Neurônios/metabolismo , RNA Mensageiro/genética , Ratos , Receptores de GABA-A/genética , Proteínas Repressoras/metabolismo , Sinapses/metabolismo
17.
J Nat Prod ; 76(10): 1989-92, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24063539

RESUMO

Two new indolo[3,2-a]carbazoles (1, 2) were isolated from a deep-water collection of a sponge of the genus Asteropus. The structures of 1 and 2 were determined through the analysis of spectroscopic data including mass spectrometry and 2D-NMR. Compound 1 showed minimum inhibitory concentrations of 25 µg/mL against the fungal pathogen Candida albicans and 50 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 1 and 2 showed no cytotoxicity against the PANC1 human pancreatic carcinoma and NCI/ADR-RES ovarian adenocarcinoma cell lines at our standard test concentration of 5 µg/mL.


Assuntos
Antibacterianos/isolamento & purificação , Carbazóis/isolamento & purificação , Compostos Heterocíclicos de 4 ou mais Anéis/isolamento & purificação , Indóis/isolamento & purificação , Poríferos/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bahamas , Candida albicans/efeitos dos fármacos , Carbazóis/química , Carbazóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Indóis/química , Indóis/farmacologia , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Staphylococcus aureus/efeitos dos fármacos
18.
Cladistics ; 29(1): 46-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34814374

RESUMO

Vibrio represents a diverse bacterial genus found in different niches of the marine environment, including numerous genera of marine sponges (phylum Porifera), inhabiting different depths and regions of benthic seas, that are potentially important in driving adaptive change among Vibrio spp. Using 16S rRNA gene sequencing, a previous study showed that sponge-derived (SD) vibrios clustered with their mainstream counterparts present in shallow, coastal ecosystems, suggesting a genetic relatedness between these populations. Sequences from the topA, ftsZ, mreB, rpoD, rctB and toxR genes were used to investigate the degree of relatedness existing between these two separate populations by examining their phylogenetic and genetic disparity. Phylogenies were constructed from the concatenated sequences of the six housekeeping genes using maximum-parsimony, maximum-likelihood and neighbour-joining algorithms. Genetic recombination was evaluated using the incongruence length difference test, Split decomposition and measuring overall compatibility of sites. This combined technical approach provided evidence that SD Vibrio strains are largely genetically homologous to their shallow-water counterparts. Moreover, the analyses conducted support the existence of extensive horizontal gene transfer between these two groups, supporting the idea of a single panmictic population structure among vibrios from two seemingly distinct, marine environments.

19.
Mar Biotechnol (NY) ; 14(6): 762-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22527266

RESUMO

The marine lithistid sponge Discodermia spp. (Family Theonellidae) contains many types of associated bacteria visible in the mesohyl while biofilms cover the pinacoderm. This study determined the identity of bacteria associated with members of the genus Discodermia using microbial culture, 16S rRNA gene clone libraries and fluorescence in situ hybridization. Four samples of Discodermia spp. were collected at depths between 24-161 m near Grand Bahama Island and Cay Sal Bank, Bahamas. A total of 80 unique isolates and 94 different clone sequences from at least eight bacterial classes were obtained. It appeared that Discodermia spp. may have a core community of bacteria that is common to all sponges of this genus. Species of at least six different classes of bacteria were regularly found in most of the sponge specimens collected, irrespective of collection depth or location. This indicates that a diverse spectrum of bacteria is associated with lithistid sponges irrespective of the transient seawater community that enters the sponge.


Assuntos
Reatores Biológicos/microbiologia , Consórcios Microbianos/fisiologia , Poríferos/microbiologia , Proteobactérias/isolamento & purificação , Proteobactérias/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Proteobactérias/classificação
20.
Int J Syst Evol Microbiol ; 62(Pt 8): 1736-1743, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21930677

RESUMO

A Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, curved rod-shaped bacterium, strain N384(T), was isolated from a marine sponge (Scleritoderma cyanea; phylum Porifera) collected from a depth of 795 feet (242 m) off the west coast of Curaçao. On the basis of 16S rRNA gene sequencing, strain N384(T) was shown to belong to the genus Vibrio, most closely related to Vibrio brasiliensis LMG 20546(T) (98.8% similarity), Vibrio nigripulchritudo ATCC 27043(T) (98.5%), Vibrio tubiashii ATCC 19109(T) (98.6%) and V. sinaloensis DSM 21326(T) (98.2%). The DNA G+C content of strain N384(T) was 41.6 mol%. An analysis of concatenated sequences of five genes (gyrB, rpoA, pyrH, mreB and ftsZ; 4068 bp) demonstrated a clear separation between strain N384(T) and its closest neighbours and clustered strain N384(T) into the 'Orientalis' clade of vibrios. Phenotypically, the novel species belonged to the arginine dihydrolase-positive, lysine decarboxylase- and ornithine decarboxylase-negative (A+/L-/O-) cluster. The novel species was also differentiated on the basis of fatty acid composition, specifically that the proportions of iso-C(13:0), iso-C(15:0), C(15:0), iso-C(16:0), C(16:0), iso-C(17:0), C(17:1)ω8c and C(17:0) were significantly different from those found in V. brasiliensis and V. sinaloensis. The results of DNA-DNA hybridization, average nucleotide identity and physiological and biochemical tests further allowed differentiation of this strain from other described species of the genus Vibrio. Collectively, these findings confirm that strain N384(T) represents a novel Vibrio species, for which the name Vibrio caribbeanicus sp. nov. is proposed, with the type strain N384(T) ( = ATCC BAA-2122(T) = DSM 23640(T)).


Assuntos
Poríferos/microbiologia , Vibrio/classificação , Vibrio/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos , Funções Verossimilhança , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...