Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(46): 18162-18171, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37319331

RESUMO

Disposal of industrial and hazardous waste in the ocean was a pervasive global practice in the 20th century. Uncertainty in the quantity, location, and contents of dumped materials underscores ongoing risks to marine ecosystems and human health. This study presents an analysis of a wide-area side-scan sonar survey conducted with autonomous underwater vehicles (AUVs) at a dump site in the San Pedro Basin, California. Previous camera surveys located 60 barrels and other debris. Sediment analysis in the region showed varying concentrations of the insecticidal chemical dichlorodiphenyltrichloroethane (DDT), of which an estimated 350-700 t were discarded in the San Pedro Basin between 1947 and 1961. A lack of primary historical documents specifying DDT acid waste disposal methods has contributed to the ambiguity surrounding whether dumping occurred via bulk discharge or containerized units. Barrels and debris observed during previous surveys were used for ground truth classification algorithms based on size and acoustic intensity characteristics. Image and signal processing techniques identified over 74,000 debris targets within the survey region. Statistical, spectral, and machine learning methods characterize seabed variability and classify bottom-type. These analytical techniques combined with AUV capabilities provide a framework for efficient mapping and characterization of uncharted deep-water disposal sites.


Assuntos
Ecossistema , Eliminação de Resíduos , Humanos , DDT , Algoritmos , Oceanos e Mares
2.
J Acoust Soc Am ; 150(2): 906, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34470282

RESUMO

In this work, we explore machine learning through a model-agnostic feature representation known as braiding, that employs braid manifolds to interpret multipath ray bundles. We generate training and testing data using the well-known BELLHOP model to simulate shallow water acoustic channels across a wide range of multipath scattering activity. We examine three different machine learning techniques-k-nearest neighbors, random forest tree ensemble, and a fully connected neural network-as well as two machine learning applications. The first application applies known physical parameters and braid information to determine the number of reflections the acoustic signal may undergo through the environment. The second application applies braid path information to determine if a braid is an important representation of the channel (i.e., evolving across bands of higher amplitude activity in the channel). Testing accuracy of the best trained machine learning algorithm in the first application was 86.70% and the testing accuracy of the second application was 99.94%. This work can be potentially beneficial in examining how the reflectors in the environment changeover time while also determining relevant braids for faster channel estimation.

3.
IEEE Access ; 9: 24727-24737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796430

RESUMO

The aim of this interdisciplinary work is a robust signal processing and autonomous machine learning framework to associate well-known (target) as well as any potentially unknown (non-target) peaks present within gas chromatography-mass spectrometry (GC/MS/MS) raw instrument signal. Particularly, this work evaluates three machine learning algorithms abilities to autonomously associate raw signal peaks based on accuracy in training and testing. A target is a known congener that is expected to be present within the raw instrument signal and a non-target is an unknown or unexpected compound. Autonomously identifying target peaks within the GC/MS/MS and associating them with non-target peaks can help improve the analysis of collected samples. Association of peaks refers to classifying peaks as known congeners regardless if the peak is a target or non-target. Uncertainty of peaks fitted and discovered through raw instrument signals from GC/MS/MS data is assessed to create topographical illustrations of target annotated peaks among sample raw instrument signals collected across diverse locations in the Chicago area. The term "annotated peak" is used to assign peaks found at specific retention times as a known congener. Adaptive signal processing techniques are utilized to smooth data and correct baseline drifts as well as detect and separate coeluted (overlapped) peaks in the raw instrument signal to provide key feature extraction. 150 air samples are analyzed for individual polychlorinated biphenyls (PCB) with GC/MS/MS across Chicago, IL. 80% of the data is used for training classification of target PCBs and 20% of the data is evaluated to identify and associate consistently occurring non-target peaks with target PCBs. A random forest classifier is used to associate identified peaks to target PCB peaks. Geographical topographical representations of target PCBs in the raw instrument signal demonstrates how PCBs accumulate and degrade in certain locations.

4.
IEEE Access ; 8: 147738-147755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335823

RESUMO

The main contribution of this interdisciplinary work is a robust computational framework to autonomously discover and quantify previously unknown associations between well-known (target) and potentially unknown (non-target) toxic industrial air pollutants. In this work, the variability of polychlorinated biphenyl (PCB) data is evaluated using a combination of statistical, signal processing, and graph-based informatics techniques to interpret the raw instrument signal from gas chromatography-mass spectrometry (GC/MS/MS) data sets. Specifically, minimum mean-squared techniques from the adaptive signal processing literature are extended to detect and separate coeluted (overlapped) peaks in the raw instrument signal. A graph-based visualization is provided which bridges two complementary approaches to quantitative pollution studies: (i) peak-cognizant target analysis (limits data analysis to few well-known compounds) and (ii) chemometric analysis (statistical large-scale data analysis) that is agnostic of specific compounds. Further, peak fitting techniques based on L2 error minimization are employed to autonomously calculate the amount of each PCB present with a normalized mean square error of -18.4851 dB. Graph-based visualization of associations between known and unknown compounds are developed through principal component analysis and both fuzzy c-means (FCM) and k-means clustering techniques are implemented and compared. The efficiency of these methods are compared using 150 air samples analyzed for individual PCBs with GC/MS/MS against traditional target-only techniques that perform analysis across only the known (target) PCBs. Parameter optimization techniques are employed to evaluate the relative contribution of PCB signals against ten potential source signals representing legacy signatures from historical manufacture of Aroclors and modern sources of PCBs produced as by products of pigment and polymer manufacturing. Aroclors 1232, 1254, 1016, and 1221 as well as non-Aroclor 3, 3', dichlorobiphenyl (PCB 11) were found in many of the samples as unique source signals that describe PCB mixtures in air samples collected from Chicago, IL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA