Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 8(4)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31601035

RESUMO

The Arabidopsis thaliana broad-range sugar phosphate phosphatase AtSgpp (NP_565895.1, locus AT2G38740) and the specific DL-glycerol-3-phosphatase AtGpp (NP_568858.1, locus AT5G57440) are members of the wide family of magnesium-dependent acid phosphatases subfamily I with the C1-type cap domain haloacid dehalogenase-like hydrolase proteins (HAD). Although both AtSgpp and AtGpp have a superimporsable α/ß Rossmann core active site, they differ with respect to the loop-5 of the cap domain, accounting for the differences in substrate specificity. Recent functional studies have demonstrated the essential but not sufficient role of the signature sequence within the motif-5 in substrate discrimination. To better understand the mechanism underlying the control of specificity, we explored additional sequence determinants underpinning the divergent evolutionary selection exerted on the substrate affinity of both enzymes. The most evident difference was found in the loop preceding the loop-5 of the cap domain, which is extended in three additional residues in AtSgpp. To determine if the shortening of this loop would constrain the substrate ambiguity of AtSgpp, we deleted these three aminoacids. The kinetic analyses of the resulting mutant protein AtSgpp3Δ (ΔF53, ΔN54, ΔN55) indicate that promiscuity is compromised. AtSgpp3Δ displays highest level of discrimination for D-ribose-5-phosphate compared to the rest of phosphate ester metabolites tested, which may suggest a proper orientation of D-ribose-5-phosphate in the AtSgpp3Δ active site.

2.
Planta ; 240(3): 479-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24915748

RESUMO

The Arabidopsis thaliana gene AtSgpp (locus tag At2g38740), encodes a protein whose sequence motifs and expected structure reveal that it belongs to the HAD hydrolases subfamily I, with the C1-type cap domain (Caparrós-Martín et al. in Planta 237:943-954, 2013). In the presence of Mg(2+) ions, the enzyme has a phosphatase activity over a wide range of phosphosugar substrates. AtSgpp promiscuity is preferentially detectable on D-ribose-5-phosphate, 2-deoxy-D-ribose-5-phosphate, 2-deoxy-D-glucose-6-phosphate, D-mannose-6-phosphate, D-fructose-1-phosphate, D-glucose-6-phosphate, DL-glycerol-3-phosphate, and D-fructose-6-phosphate. Site-directed mutagenesis analysis of the putative signature sequence motif-5 (IAGKH), which defines its specific chemistry, brings to light the active-site residues Ala-69 and His-72. Mutation A69M, changes the pH dependence of AtSgpp catalysis, and mutant protein AtSgpp-H72K was inactive in phosphomonoester dephosphorylation. It was also observed that substitutions I68M and K71R slightly affect the substrate specificity, while the replacement of the entire motif for that of homologous DL-glycerol-3-phosphatase AtGpp (MMGRK) does not switch AtSgpp activity to the specific targeting for DL-glycerol-3-phosphate.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Especificidade por Substrato
3.
Planta ; 237(4): 943-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23179445

RESUMO

This work presents the isolation and the biochemical characterization of the Arabidopsis thaliana gene AtSgpp. This gene shows homology with the Arabidopsis low molecular weight phosphatases AtGpp1 and AtGpp2 and the yeast counterpart GPP1 and GPP2, which have a high specificity for DL-glycerol-3-phosphate. In addition, it exhibits homology with DOG1 and DOG2 that dephosphorylate 2-deoxy-D-glucose-6-phosphate. Using a comparative genomic approach, we identified the AtSgpp gene as a conceptual translated haloacid dehalogenase-like hydrolase HAD protein. AtSgpp (locus tag At2g38740), encodes a protein with a predicted Mw of 26.7 kDa and a pI of 4.6. Its sequence motifs and expected structure revealed that AtSgpp belongs to the HAD hydrolases subfamily I, with the C1-type cap domain. In the presence of Mg(2+) ions, the enzyme has a phosphatase activity over a wide range of phosphosugars substrates (pH optima at 7.0 and K m in the range of 3.6-7.7 mM). AtSgpp promiscuity is preferentially detectable on D-ribose-5-phosphate, 2-deoxy-D-ribose-5-phosphate, 2-deoxy-D-glucose-6-phosphate, D-mannose-6-phosphate, D-fructose-1-phosphate, D-glucose-6-phosphate, DL-glycerol-3-phosphate, and D-fructose-6-phosphate, as substrates. AtSgpp is ubiquitously expressed throughout development in most plant organs, mainly in sepal and guard cell. Interestingly, expression is affected by abiotic and biotic stresses, being the greatest under Pi starvation and cyclopentenone oxylipins induction. Based on both, substrate lax specificity and gene expression, the physiological function of AtSgpp in housekeeping detoxification, modulation of sugar-phosphate balance and Pi homeostasis, is provisionally assigned.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolases/genética , Monoéster Fosfórico Hidrolases/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Hidrolases/isolamento & purificação , Hidrolases/metabolismo , Cinética , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/isolamento & purificação , Monoéster Fosfórico Hidrolases/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
Planta ; 231(4): 977-90, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20108000

RESUMO

We previously showed that recombinant extra domain A from fibronectin (EDA) purified from Escherichia coli was able to bind to toll-like receptor 4 (TLR4) and stimulate production of proinflammatory cytokines by dendritic cells. Because EDA could be used as an adjuvant for vaccine development, we aimed to express it from the tobacco plastome, a promising strategy in molecular farming. To optimize the amount of recombinant EDA (rEDA) in tobacco leaves, different downstream sequences were evaluated as potential fusion tags. Plants generated by tobacco plastid transformation accumulated rEDA at levels up to 2% of the total cellular protein (equivalent to approximately 0.3 mg/g fresh weight) when translationally fused to the first 15 amino acids of green fluorescence protein (GFP). The recombinant adjuvant could be purified from tobacco leaves using a simple procedure, involving ammonium sulfate precipitation and anion exchange chromatography. Purified protein was able to induce production of tumour necrosis factor-alpha (TNF-alpha) either by bone marrow-derived dendritic cells or THP-1 monocytes. The rEDA produced in tobacco leaves was also able to induce upregulation of CD54 and CD86 maturation markers on dendritic cells, suggesting that the rEDA retains the proinflammatory properties of the EDA produced in E. coli and thus could be used as an adjuvant in vaccination against infectious agents and cancer. Taken together, these results demonstrate that chloroplasts are an attractive production vehicle for the expression of this protein vaccine adjuvant.


Assuntos
Adjuvantes Anestésicos/farmacologia , Cloroplastos/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Adjuvantes Anestésicos/metabolismo , Animais , Northern Blotting , Southern Blotting , Células Cultivadas , Cloroplastos/genética , Cromatografia por Troca Iônica , Células Dendríticas/efeitos dos fármacos , Fibronectinas/genética , Camundongos , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...